
Variables and Algo

Astier Guillaume, Lefebvre Loic, Morit Luca

26/09/2025

The variables

Protect a variable

Scripting base

Survival_Kit

Algo

Process management

The variables

Variables ?

A variable has 2 elements :

▶ the name

▶ the value –> $name

Variables ?

A variable has 2 elements :

▶ the name
▶ the value –> $name

Specific variables : environment

An environment variable is a dynamic variable used by processes or applications to
define information paths or shortcuts. You can visualize all your environment variables
with the env SHELL command. Usually all the environment variable are in capital case.

▶ PATH

▶ PS1
▶ TERM
▶ HOME
▶ SHELL

Specific variables : environment

An environment variable is a dynamic variable used by processes or applications to
define information paths or shortcuts. You can visualize all your environment variables
with the env SHELL command. Usually all the environment variable are in capital case.

▶ PATH
▶ PS1

▶ TERM
▶ HOME
▶ SHELL

Specific variables : environment

An environment variable is a dynamic variable used by processes or applications to
define information paths or shortcuts. You can visualize all your environment variables
with the env SHELL command. Usually all the environment variable are in capital case.

▶ PATH
▶ PS1
▶ TERM

▶ HOME
▶ SHELL

Specific variables : environment

An environment variable is a dynamic variable used by processes or applications to
define information paths or shortcuts. You can visualize all your environment variables
with the env SHELL command. Usually all the environment variable are in capital case.

▶ PATH
▶ PS1
▶ TERM
▶ HOME

▶ SHELL

Specific variables : environment

An environment variable is a dynamic variable used by processes or applications to
define information paths or shortcuts. You can visualize all your environment variables
with the env SHELL command. Usually all the environment variable are in capital case.

▶ PATH
▶ PS1
▶ TERM
▶ HOME
▶ SHELL

PATH

PATH is a list of directory. With bash (and not sh) you don’t have to write the
absolute or relative path of a command. If the command you type exist in one of this
directory, bash will call it.

1 isen@localhost:~$ echo $PATH
2 /sbin/:/home/isen/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games
3 isen@localhost:~$ id
4 uid=1000(isen) gid=1000(isen) groupes=1000(isen)
5 isen@localhost:~$ which id
6 /usr/bin/id

PS1

PS1 stands for “Prompt String One” or “Prompt Statement One”

It is the first prompt string (that you see at a command line).

You can change it easily “live” or in your .bashrc file to be effective in every SHELL
terminal

1 isen@localhost:~$ echo $PS1
2 echo $PS1
3 \[\e]0;\u@\h: \w\a\]${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[

00m\]:\[\033[01;34m\]\w\[\033[00m\]\$
4 isen@localhost:~$ PS1="Go for it->"
5 Go for it->echo $PS1
6 Go for it->

TERM

TERM variable defines the terminal type.
1 isen@localhost:~$ echo $TERM
2 xterm-256color

HOME

HOME is a Linux bash shell variable. It indicates the home directory of the current
user. It also represent the default argument for the cd command. The value of this
variable is also used when performing tilde expansion.

The value is set with the /etc/passwd file when the operating system is starting
1 isen@localhost:~$ echo $HOME
2 /home/isen
3 isen@localhost:~$ grep isen /etc/passwd
4 isen:x:1000:1000:A random user:/home/isen:/bin/bash

SHELL

The SHELL is an environment variable. The full pathname to the shell is in this
environment variable.

The value is set with the /etc/passwd file when the operating system is starting
1 isen@localhost:~$ echo $SHELL
2 /bin/bash
3 isen@localhost:~$ grep isen /etc/passwd
4 isen:x:1000:1000:A random user:/home/isen:/bin/bash

List of SHELL linux

There is a lot of other shell on linux :

▶ Shell Bourne (l’antique shell de Steve Bourne) : /bin/sh

▶ Korn SHell, the David Korn’s shell for UNIX : /bin/ksh and /bin/pdksh
(freeware)

▶ C SHell : /bin/csh
▶ Zorn SHell : /bin/zsh
▶ Bash (Bourne Again SHell, the Linux shell) : /bin/bash

List of SHELL linux

There is a lot of other shell on linux :

▶ Shell Bourne (l’antique shell de Steve Bourne) : /bin/sh
▶ Korn SHell, the David Korn’s shell for UNIX : /bin/ksh and /bin/pdksh

(freeware)

▶ C SHell : /bin/csh
▶ Zorn SHell : /bin/zsh
▶ Bash (Bourne Again SHell, the Linux shell) : /bin/bash

List of SHELL linux

There is a lot of other shell on linux :

▶ Shell Bourne (l’antique shell de Steve Bourne) : /bin/sh
▶ Korn SHell, the David Korn’s shell for UNIX : /bin/ksh and /bin/pdksh

(freeware)
▶ C SHell : /bin/csh

▶ Zorn SHell : /bin/zsh
▶ Bash (Bourne Again SHell, the Linux shell) : /bin/bash

List of SHELL linux

There is a lot of other shell on linux :

▶ Shell Bourne (l’antique shell de Steve Bourne) : /bin/sh
▶ Korn SHell, the David Korn’s shell for UNIX : /bin/ksh and /bin/pdksh

(freeware)
▶ C SHell : /bin/csh
▶ Zorn SHell : /bin/zsh

▶ Bash (Bourne Again SHell, the Linux shell) : /bin/bash

List of SHELL linux

There is a lot of other shell on linux :

▶ Shell Bourne (l’antique shell de Steve Bourne) : /bin/sh
▶ Korn SHell, the David Korn’s shell for UNIX : /bin/ksh and /bin/pdksh

(freeware)
▶ C SHell : /bin/csh
▶ Zorn SHell : /bin/zsh
▶ Bash (Bourne Again SHell, the Linux shell) : /bin/bash

Protect a variable

IFS

The IFS is an acronym for Internal Field Separator or Input Field Separator. The IFS
is a special shell variable in Bash, ksh, sh, and POSIX. Let us see what IFS is and why
you need to use it while writing shell scripts under Linux and Unix.

By default the IFS is compased by:

▶ Carriage return

▶ Tabulation
▶ Space

IFS

The IFS is an acronym for Internal Field Separator or Input Field Separator. The IFS
is a special shell variable in Bash, ksh, sh, and POSIX. Let us see what IFS is and why
you need to use it while writing shell scripts under Linux and Unix.

By default the IFS is compased by:

▶ Carriage return
▶ Tabulation

▶ Space

IFS

The IFS is an acronym for Internal Field Separator or Input Field Separator. The IFS
is a special shell variable in Bash, ksh, sh, and POSIX. Let us see what IFS is and why
you need to use it while writing shell scripts under Linux and Unix.

By default the IFS is compased by:

▶ Carriage return
▶ Tabulation
▶ Space

Change IFS

IFS can be change before using a command or a function.

You may display the actual value of IFS with the following command
1 isen@localhost:$ echo "--$IFS--"
2 --
3 --

Warning: many Linux processes use the IFS.

Protect a variable : Syntax

Theres is three essential quotes in SHELL :

▶ simple quote ’: the string between these will not be interpreted

▶ double quote “: the string between these will be interpreted (special character like
$)

▶ backquote ‘: the string between these will be a SHELL COMMAND, you can use
$(COMMAND) to make it more readable

Protect a variable : Syntax

Theres is three essential quotes in SHELL :

▶ simple quote ’: the string between these will not be interpreted
▶ double quote “: the string between these will be interpreted (special character like

$)

▶ backquote ‘: the string between these will be a SHELL COMMAND, you can use
$(COMMAND) to make it more readable

Protect a variable : Syntax

Theres is three essential quotes in SHELL :

▶ simple quote ’: the string between these will not be interpreted
▶ double quote “: the string between these will be interpreted (special character like

$)
▶ backquote ‘: the string between these will be a SHELL COMMAND, you can use

$(COMMAND) to make it more readable

Variable visibility 1/4

All your variables will have a “scope”, or a visibility. By default, the variables defined in
a SHELL terminal are visible in your SHELL terminal and only in it.

1 isen@localhost:~$ Var=CONTENU
2 isen@localhost:~$ echo $Var
3 CONTENU
4 isen@localhost:~$ bash
5 isen@localhost:~$ ps
6 PID TTY TIME CMD
7 12996 pts/2 00:00:00 bash
8 13009 pts/2 00:00:00 bash
9 13021 pts/2 00:00:00 ps

10 isen@localhost:~$ echo $Var
11
12 isen@localhost:~$ exit

Variable visibility 2/4

You will have to export a variable to make it visible for other CHILD SHELL Terminal
or script

1 isen@localhost:~$ Var=CONTENU
2 isen@localhost:~$ echo $Var
3 CONTENU
4 isen@localhost:~$ export Var
5 isen@localhost:~$ bash
6 isen@localhost:~$ ps
7 PID TTY TIME CMD
8 12996 pts/2 00:00:00 bash
9 13406 pts/2 00:00:00 bash

10 13435 pts/2 00:00:00 ps
11 isen@localhost:~$ echo $Var
12 CONTENU

Variable visibility 3/4

The same apply for your script, the scope of your variable will only be inside your script
You may source another script to extend the vivibility of your variables to the other
script

Consider two scripts Prog1.sh and Prog2.sh as bellow
1 isen@localhost:~$ cat Prog1.sh
2 #!/bin/bash
3 Var=CONTENU
4 echo "Prog1 : $Var"
5 ./Prog2.sh
6 isen@localhost:~$ cat Prog2.sh
7 #!/bin/bash
8 echo "Prog2 : $Var"
9 isen@localhost:~$./Prog1.sh

10 Prog1 : CONTENU
11 Prog2 :

Variable visibility 4/4

Now ! Consider two scripts Prog1.sh and Prog2.sh as bellow
1 isen@localhost:~$ cat Prog1.sh
2 #!/bin/bash
3 Var=CONTENU
4 echo "Prog1 : $Var"
5 source ./Prog2.sh
6 isen@localhost:~$ cat Prog2.sh
7 #!/bin/bash
8 echo "Prog2 : $Var"
9 isen@localhost:~$./Prog1.sh

10 Prog1 : CONTENU
11 Prog2 : CONTENU

Protect a variable : Exemples

1 isen@localhost:~$ Var="ONE"
2 isen@localhost:~$ echo "$Var"_FILE
3 ONE_FILE
4 isen@localhost:~$ Var="ONE"
5 isen@localhost:~$ echo '$Var'_FILE
6 '$Var'_FILE
7 isen@localhost:~$ echo '${Var}'_FILE
8 ${Var}_FILE
9 isen@localhost:~$ echo $Var_FILE

10 (nohing because Var_FILE dont exist)
11 isen@localhost:~$ echo ${Var}_FILE
12 ONE_FILE
13 isen@localhost:~$ls
14 C02 C03 C04 data EXAM Old ORIG
15 isen@localhost:~$ Var=$(ls) #or Var=`ls`
16 isen@localhost:~$ echo $Var
17 C02 C03 C04 data EXAM Old ORIG

Scripting base

What is a script

Instead of launching the commands directly in a terminal, we can write a text file with
the shebang and the execution rights

1 username@hostname:~$ cat myfirstscript.sh
2 #!/bin/bash
3
4 echo toto
5 username@hostname:~$ chmod +x myfirstscript.sh
6 username@hostname:~$./myfirstscript.sh
7 toto

Advantages/Disadvantages

▶ Advantages

▶ More readable
▶ Saved
▶ Exportable
▶ Debugging

▶ Disadvantages

▶ Debugging

Advantages/Disadvantages

▶ Advantages
▶ More readable

▶ Saved
▶ Exportable
▶ Debugging

▶ Disadvantages

▶ Debugging

Advantages/Disadvantages

▶ Advantages
▶ More readable
▶ Saved

▶ Exportable
▶ Debugging

▶ Disadvantages

▶ Debugging

Advantages/Disadvantages

▶ Advantages
▶ More readable
▶ Saved
▶ Exportable

▶ Debugging
▶ Disadvantages

▶ Debugging

Advantages/Disadvantages

▶ Advantages
▶ More readable
▶ Saved
▶ Exportable
▶ Debugging

▶ Disadvantages

▶ Debugging

Advantages/Disadvantages

▶ Advantages
▶ More readable
▶ Saved
▶ Exportable
▶ Debugging

▶ Disadvantages

▶ Debugging

Advantages/Disadvantages

▶ Advantages
▶ More readable
▶ Saved
▶ Exportable
▶ Debugging

▶ Disadvantages
▶ Debugging

Variable of a script

Name Description

$0 the name of the current shell program.
$1…${n} the n parameters passed to the program (to the shell) when it is

called.
$# the number of parameters passed to the shell program call (not

included the $0 parameter)
$* the list of parameters passed to the shell program call (not

included the $0 parameter)
$$ the current process number (there is a unique number per process

on the machine)
$? the error code of the last command executed.

Example of use

1 username@hostname:~$ cat mysecondscript.sh
2 #!/bin/bash
3 echo "Thx to launch ${0}"
4 echo "There are ${#} arguments"
5 echo "They are : ${*} but the second is $2"
6 false
7 echo ${?}
8
9 username@hostname:~$./mysecondscript.sh toto titi tutu

10 Thx to launch ./mysecondscript.sh
11 There are 3 arguments
12 They are : toto titi tutu but the second is titi
13 1

Survival_Kit

Golden rules

▶ Indent your script

▶ Comment your script
▶ Use a Naming rule
▶ Declare your variable at the start of your script
▶ Always test your entries
▶ Give your script some “fresh air”
▶ Test the return value of your SHELL commands ($?)
▶ Use the man, level 1 (try a man -k)
▶ Render your script executable : chmod +x Mynewscript.sh

Golden rules

▶ Indent your script
▶ Comment your script

▶ Use a Naming rule
▶ Declare your variable at the start of your script
▶ Always test your entries
▶ Give your script some “fresh air”
▶ Test the return value of your SHELL commands ($?)
▶ Use the man, level 1 (try a man -k)
▶ Render your script executable : chmod +x Mynewscript.sh

Golden rules

▶ Indent your script
▶ Comment your script
▶ Use a Naming rule

▶ Declare your variable at the start of your script
▶ Always test your entries
▶ Give your script some “fresh air”
▶ Test the return value of your SHELL commands ($?)
▶ Use the man, level 1 (try a man -k)
▶ Render your script executable : chmod +x Mynewscript.sh

Golden rules

▶ Indent your script
▶ Comment your script
▶ Use a Naming rule
▶ Declare your variable at the start of your script

▶ Always test your entries
▶ Give your script some “fresh air”
▶ Test the return value of your SHELL commands ($?)
▶ Use the man, level 1 (try a man -k)
▶ Render your script executable : chmod +x Mynewscript.sh

Golden rules

▶ Indent your script
▶ Comment your script
▶ Use a Naming rule
▶ Declare your variable at the start of your script
▶ Always test your entries

▶ Give your script some “fresh air”
▶ Test the return value of your SHELL commands ($?)
▶ Use the man, level 1 (try a man -k)
▶ Render your script executable : chmod +x Mynewscript.sh

Golden rules

▶ Indent your script
▶ Comment your script
▶ Use a Naming rule
▶ Declare your variable at the start of your script
▶ Always test your entries
▶ Give your script some “fresh air”

▶ Test the return value of your SHELL commands ($?)
▶ Use the man, level 1 (try a man -k)
▶ Render your script executable : chmod +x Mynewscript.sh

Golden rules

▶ Indent your script
▶ Comment your script
▶ Use a Naming rule
▶ Declare your variable at the start of your script
▶ Always test your entries
▶ Give your script some “fresh air”
▶ Test the return value of your SHELL commands ($?)

▶ Use the man, level 1 (try a man -k)
▶ Render your script executable : chmod +x Mynewscript.sh

Golden rules

▶ Indent your script
▶ Comment your script
▶ Use a Naming rule
▶ Declare your variable at the start of your script
▶ Always test your entries
▶ Give your script some “fresh air”
▶ Test the return value of your SHELL commands ($?)
▶ Use the man, level 1 (try a man -k)

▶ Render your script executable : chmod +x Mynewscript.sh

Golden rules

▶ Indent your script
▶ Comment your script
▶ Use a Naming rule
▶ Declare your variable at the start of your script
▶ Always test your entries
▶ Give your script some “fresh air”
▶ Test the return value of your SHELL commands ($?)
▶ Use the man, level 1 (try a man -k)
▶ Render your script executable : chmod +x Mynewscript.sh

Golden rules example 1/2

1 #BAD
2 if [[-f $titi]];then echo "your parameter is a file";cp $1 "$1".old;fi
3 #GOOD
4 if [[-f ${Nom_Fichier_Saisi}]]
5 then
6 echo "your parameter is a file"
7 cp $1 "${Nom_Fichier_Saisi}".old
8 fi

Golden rules example 2/2

if your script is waiting for an argument representing a name of a file.
1 #Test of arguments
2 if [$# -lt 1]
3 then
4 echo "You must give an argument for the script"
5 exit 1
6 fi
7 #Test of the type of the first argument
8 if [-e $1]
9 then

10 echo "You must give an valid file name for the first argument for the script"
11 exit 2
12 fi

Algo

IF Condition

IF condition
SO
——> Launch_action
END IF

Example of if condition

1 isen@localhost:~$ cat exampleIf.sh
2 #!/bin/bash
3 if [$1 -eq 1]; then
4 echo "The first argument is 1"
5 fi
6 isen@localhost:~$ bash exampleIf.sh 2
7
8 isen@localhost:~$ bash exampleIf.sh 1
9 The first argument is 1

if/else condition

IF condition
SO
——> Launch_action
ELSE
——> Launch_action
END IF

Example of if/else condition

1 isen@localhost:~$ cat exampleIfElse.sh
2 #!/bin/bash
3 if [$1 -eq 1]; then
4 echo "The first argument is 1"
5 else
6 echo "The first argument is not 1"
7 fi
8 isen@localhost:~$ exempleIfElse.sh 2
9 The first argument is not 1

10 isen@localhost:~$ exempleIfElse.sh 1
11 The first argument is 1

if/elif condition

IF condition
SO
——> Launch_action
ELSE IF other_condition
SO
——> Launch_action
END IF

Example of if/elif condition

1 isen@localhost:~$ exampleIfelIf.sh
2 #!/bin/bash
3 if [$1 -eq 1]; then
4 echo "The first argument is 1"
5 elif [$1 -eq 2]; then
6 echo "The first argument is 2"
7 fi
8 isen@localhost:~$ exampleIfelIf.sh 10
9 isen@localhost:~$ exampleIfelIf.sh 1

10 The first argument is 1
11 isen@localhost:~$ exampleIfelIf.sh 2
12 The first argument is 2

if/elif/else condition

IF condition
SO
——> Launch_action
ELSE IF other_condition
SO
——> Launch_action
ELSE
——> Launch_action
END IF

Exemple of condition if/elif/else

1 isen@localhost:~$ cat exampleIfelIfElse.sh
2 #!/bin/bash
3 if [$1 -eq 1]; then
4 echo "The first argument is 1"
5 elif [$1 -eq 2]; then
6 echo "The first argument is 2"
7 else
8 echo "I do not understant"
9 fi

10 isen@localhost:~$ bash exampleIfelIfElse.sh 10
11 I do not understant
12 isen@localhost:~$ bash exampleIfelIfElse.sh 1
13 The first argument is 1
14 isen@localhost:~$ bash xampleIfelIfElse.sh 2
15 The first argument is 2

Tests - File

Operand Description example

-e filename true if filename exist [-e /etc/shadow]
-d filename true if filename is a directory [-d /tmp/trash]
-f filename true if filename is an ordinary file [-f /tmp/Log.txt]
-L filename true if filename is a symbolic link [-L /home]
-r filename true if filename is readable (r) [-r /boot/vmlinuz]
-w filename true if filename is modifiable (w) [-w /var/log]
-x filename true if filename is an executable (x) [-x /sbin/halt]

Tests - Strings

Operand Description example

-z txt true if the string is empty [-z "${VAR}"]

-n txt true if the string is NOT empty [-n "${VAR}"]

txt = txt true if the two string are equal ["${VAR}"= "toto"]

txt != txt true if the two string are NOT equal ["${VAR}"!= "toto"]

Tests - Numeric

Operand Description example

num1 -eq num2 equality [$Number -eq 42]
num1 -ne num2 not equal [$Number -ne 42]
num1 -lt num2 lesser than (<) [$Number -lt 42]
num1 -le num2 lesser or equal (<=) [$Number -le 42]
num1 -gt num2 greater than (>) [$Number -gt 42]
num1 -ge num2 greater or equal (>=) [$Number -ge 42]

Example of test (1/2)

1 #!/bin/bash
2 # directory exists ? 1/2
3 test -d /home/isen
4 rc=$?
5 if [$rc -ne 0]; then
6 echo "The directory /home/isen does not exist"
7 fi

Example de test (2/2)

1 #!/bin/bash
2 # directory exists ? 2/2
3 if [-d "/home/isen"]; then
4 echo "the directory /home/isen exists"
5 fi
6 # comparison of 2 strings
7 if ["toto" = "titi"]; then
8 echo "toto is not equal to titi"
9 fi

While loop

WHILE condition
DO
——> Launch_action
RESTART

Example of while loop (1/2)

1 isen@localhost:~$ cat while.sh
2 #!/bin/bash
3 a=0
4 while [$a -le 3]
5 do
6 echo "$a"
7 a=$(($a + 1))
8 done
9

10 isen@localhost:~$ bash while.sh
11 0
12 1
13 2
14 3

Example of while loop (2/2)

1 while true; do
2 echo $RANDOM
3 done

The bash is compiled as a 64-bit monothread. With this command your bash will use
100% of a CPU core. To protect your CPU, always put an “useless/time-out” action

1 while true; do
2 echo $RANDOM
3 sleep 1
4 done

for loop

FOR variable IN value1 value2 value3
DO
——> Launch_action
NEXT_ACTION

Example of for loop (1/2)

1 isen@localhost:~$ cat for1.sh
2 #!/bin/bash
3 for var in 'value1' 'value2' 'value3'; do
4 echo "Var = ${var}" ;
5 done
6
7 isen@localhost:~$ bash for1.sh
8 Var = value1
9 Var = value2

10 Var = value3

Example of for loop (2/2)

To get closer to the c code (this syntax is not widely used in bash):
1
2 isen@localhost:~$ cat for2.sh
3 #!/bin/bash
4 for i in $(seq 0 2)
5 do
6 echo $i
7 done
8
9 isen@localhost:~$ bash for2.sh

10 0
11 1
12 2

This syntax $(seq 0 3) is equivalent to ((i=0;i<=3;i++))

Case/Esac

1 case ${vars} in
2 1) command1
3 command1bis
4 ;;
5 2) command2
6 command2bis
7 ;;
8 *) commanddefault
9 commanddefault2

10 ;;
11 esac

Example of Case/Esac

1 isen@localhost:~$ cat myScriptCase.sh
2 #!/bin/bash
3 case ${1} in
4 toto) echo "toto is a beautifull name";;
5 titi) echo "I prefer toto as a name";;
6 *) echo "i do not understand"
7 esac
8
9 isen@localhost:~$ bash myScriptCase.sh toto

10 toto is a beautifull name
11 isen@localhost:~$ bash myScriptCase.sh titi
12 I prefer toto as a name
13 isen@localhost:~$ bash myScriptCase.sh Loic
14 i do not understand

BREAK/CONTINUE

1 isen@localhost:~$ cat for3.sh
2 #!/bin/bash
3 for var in value1 value2 value3 value4 value5; do
4 ["$var" = "value2"] && continue
5 ["$var" = "value4"] && break
6 echo $var
7 done
8
9 isen@localhost:~$ bash for3.sh

10 value1
11 value3

BREAK = stop the loop

CONTINUE = go to the next iterration

Process management

Process management

Linux being a multitasking system, several programs can run at the same time.

When a program is started, a process is created. This is an active entity that has
characteristics (priority, registers, ordinal counter, memory, etc.). Some characteristics
may change over time

The system identifies the processes using an identifier (PID = Process IDentification).

The management of processes in Linux is said to be hierarchical.

A process can itself create another process (fork + exec). The created process is called
a child process. The creator is called the parent process.

nice & renice

The nice and renice commands allow you to set or change the priority of a process.
The range of possible values is -20 (most favorable priority) to 19 (least favorable).

1 isen@localhost:~$ nice -n -20 find / -type f -name "*.sh"
2 isen@localhost:~$ renice 20 7643

kill

The kill command sends a signal to a process. Overlays to the kill command exist
killall, pgrep / pkill, xkill

1 isen@localhost:~$ kill 456
2 isen@localhost:~$ kill -9 -1
3 isen@localhost:~$ pkill firefox

Managing tasks in an interactive session

Interactive processes are started and managed from the user’s terminal. There are 2
modes:

▶ Foreground mode

▶ Background mode

Managing tasks in an interactive session

Interactive processes are started and managed from the user’s terminal. There are 2
modes:

▶ Foreground mode

▶ Background mode

Managing tasks in an interactive session - Foreground mode

The process monopolizes the terminal until its termination
1 isen@localhost:~$ sleep 10
2 [...]

Managing tasks in an interactive session - Mode background

The process works in parallel with the terminal
1 isen@localhost:~$ sleep 10 &
2 [1] 3384
3 $

The “ctrl-z” key sequence and the commands “jobs, bg, fg commands” allow you to
switch a process from one mode to the other.

Synthesis

Display the processes

You can use the SHELL command ps to display all the processes currently in execution
on your computer

example to see the processes belonging to your current SHELL :
1 isen@localhost:~$ ps
2 3837 pts/2 00:00:00 bash
3 137967 pts/2 00:00:09 evince
4 144605 pts/2 00:00:00 ps

example to see the processes belonging to you current owner :
1 isen@localhost:~$ ps -u isen
2 PID TTY TIME CMD
3 2053 ? 00:00:02 systemd
4 2054 ? 00:00:00 (sd-pam)
5 2059 ? 00:04:16 pulseaudio
6

