Variables and Algo

Astier Guillaume, Lefebvre Loic, Morit Luca

26/09/2025

The variables

Protect a variable

Scripting base

Survival_Kit

Algo

Process management

The variables

Variables ?

A variable has 2 elements :

P the name

Variables ?

A variable has 2 elements :

P the name
P the value —> $name

Specific variables : environment

An environment variable is a dynamic variable used by processes or applications to
define information paths or shortcuts. You can visualize all your environment variables

with the env SHELL command. Usually all the environment variable are in capital case.

» PATH

Specific variables : environment

An environment variable is a dynamic variable used by processes or applications to
define information paths or shortcuts. You can visualize all your environment variables

with the env SHELL command. Usually all the environment variable are in capital case.

» PATH
» PS1

Specific variables : environment

An environment variable is a dynamic variable used by processes or applications to
define information paths or shortcuts. You can visualize all your environment variables

with the env SHELL command. Usually all the environment variable are in capital case.

» PATH
» PS1
» TERM

Specific variables : environment

An environment variable is a dynamic variable used by processes or applications to
define information paths or shortcuts. You can visualize all your environment variables

with the env SHELL command. Usually all the environment variable are in capital case.

» PATH
» PS1

» TERM
» HOME

Specific variables : environment

An environment variable is a dynamic variable used by processes or applications to
define information paths or shortcuts. You can visualize all your environment variables

with the env SHELL command. Usually all the environment variable are in capital case.

» PATH
» PS1

» TERM
» HOME
» SHELL

PATH

PATH is a list of directory. With bash (and not sh) you don't have to write the
absolute or relative path of a command. If the command you type exist in one of this
directory, bash will call it.

isen@localhost:~$ echo $PATH
/sbin/:/home/isen/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games
isen@localhost:~$ id

uid=1000(isen) gid=1000(isen) groupes=1000(isen)

isen@localhost:~$ which id

/usr/bin/id

S O W N

PS1

[&)]

PS1 stands for “Prompt String One” or “Prompt Statement One"
It is the first prompt string (that you see at a command line).

You can change it easily “live” or in your .bashrc file to be effective in every SHELL

terminal

isen@localhost:~$ echo $PS1

echo $PS1

\[\e]O;\u@\h: \w\a\]l${debian_chroot:+($debian_chroot)}\[\033[01;32m\]\u@\h\[\033[
00m\]:\[\033[01;34m\]\w\[\033[00m\]\$

isen@localhost:~$ PSi=

Go for it->echo $PS1

Go for it->

N3SI

TERM

TERM variable defines the terminal type.

1 | isen@localhost:~$ echo $TERM
xterm-256color

HOME

A W N =

HOME is a Linux bash shell variable. It indicates the home directory of the current
user. It also represent the default argument for the cd command. The value of this

variable is also used when performing tilde expansion.

The value is set with the /etc/passwd file when the operating system is starting

isen@localhost:~$ echo $HOME
/home/isen
isen@localhost:~$ grep isen /etc/passwd

isen:x:1000:1000:A random user:/home/isen:/bin/bash

SHELL

The SHELL is an environment variable. The full pathname to the shell is in this
environment variable.

The value is set with the /etc/passwd file when the operating system is starting

isen@localhost:~$ echo $SHELL
/bin/bash

isen@localhost:~$ grep isen /etc/passwd

A W N =

isen:x:1000:1000:A random user:/home/isen:/bin/bash

List of SHELL linux

There is a lot of other shell on linux :

P Shell Bourne (I'antique shell de Steve Bourne) : /bin/sh

List of SHELL linux

There is a lot of other shell on linux :

P> Shell Bourne (I'antique shell de Steve Bourne) : /bin/sh
P Korn SHell, the David Korn's shell for UNIX : /bin/ksh and /bin/pdksh

(freeware)

List of SHELL linux

There is a lot of other shell on linux :

P> Shell Bourne (I'antique shell de Steve Bourne) : /bin/sh
P Korn SHell, the David Korn's shell for UNIX : /bin/ksh and /bin/pdksh

(freeware)
P C SHell : /bin/csh

List of SHELL linux

There is a lot of other shell on linux :

P> Shell Bourne (I'antique shell de Steve Bourne) : /bin/sh

P Korn SHell, the David Korn's shell for UNIX : /bin/ksh and /bin/pdksh
(freeware)

P C SHell : /bin/csh

P Zorn SHell : /bin/zsh

List of SHELL linux

There is a lot of other shell on linux :

P> Shell Bourne (I'antique shell de Steve Bourne) : /bin/sh

P Korn SHell, the David Korn's shell for UNIX : /bin/ksh and /bin/pdksh
(freeware)

P C SHell : /bin/csh

P Zorn SHell : /bin/zsh

P Bash (Bourne Again SHell, the Linux shell) : /bin/bash

Protect a variable

IFS

The IFS is an acronym for Internal Field Separator or Input Field Separator. The IFS
is a special shell variable in Bash, ksh, sh, and POSIX. Let us see what IFS is and why
you need to use it while writing shell scripts under Linux and Unix.

By default the IFS is compased by:

P Carriage return

IFS

The IFS is an acronym for Internal Field Separator or Input Field Separator. The IFS
is a special shell variable in Bash, ksh, sh, and POSIX. Let us see what IFS is and why
you need to use it while writing shell scripts under Linux and Unix.

By default the IFS is compased by:

P Carriage return
P Tabulation

IFS

The IFS is an acronym for Internal Field Separator or Input Field Separator. The IFS
is a special shell variable in Bash, ksh, sh, and POSIX. Let us see what IFS is and why
you need to use it while writing shell scripts under Linux and Unix.

By default the IFS is compased by:

P Carriage return
P Tabulation
P Space

Change IFS

IFS can be change before using a command or a function.

You may display the actual value of IFS with the following command

1 | isen@localhost:$ echo
2 J—
3 | --

Warning: many Linux processes use the IFS.

Protect a variable : Syntax

Theres is three essential quotes in SHELL

P simple quote ": the string between these will not be interpreted

Protect a variable : Syntax

Theres is three essential quotes in SHELL

P simple quote ": the string between these will not be interpreted

P> double quote “: the string between these will be interpreted (special character like

)

Protect a variable : Syntax

Theres is three essential quotes in SHELL

P simple quote ": the string between these will not be interpreted

P> double quote “: the string between these will be interpreted (special character like
$)

P backquote ‘: the string between these will be a SHELL COMMAND, you can use
$(COMMAND) to make it more readable

Variable visibility 1/4

All your variables will have a “scope”, or a visibility. By default, the variables defined in
a SHELL terminal are visible in your SHELL terminal and only in it.

1 | isen@localhost:~$ Var=CONTENU
2 | isen@localhost:~$ echo $Var

3 | CONTENU

4 | isen@localhost:~$ bash

5 | isen@localhost:~$ ps

6 PID TTY TIME CMD

7 12996 pts/2 00:00:00 bash
8 13009 pts/2 00:00:00 bash
9 13021 pts/2 00:00:00 ps
10 | isen@localhost:~$ echo $Var
11

12 | isen@localhost:~$ exit

=
m
N

Variable visibility 2/4

© 0N O O & WN =

= e
N = O

You will have to export a variable to make it visible for other CHILD SHELL Terminal

or script
isen@localhost:~$ Var=CONTENU
isen@localhost:~$ echo $Var
CONTENU
isen@localhost:~$ export Var
isen@localhost:~$ bash
isen@localhost:~$ ps

PID TTY TIME CMD

12996 pts/2
13406 pts/2
13435 pts/2

00:00:00 bash
00:00:00 bash
00:00:00 ps

isen@localhost:~$ echo $Var

CONTENU

=
m
N

Variable visibility 3/4

© 00N O O & WN -

==
= O

The same apply for your script, the scope of your variable will only be inside your script
You may source another script to extend the vivibility of your variables to the other

script

Consider two scripts Progl.sh and Prog2.sh as bellow

isen@localhost:~$ cat Progl.sh
#!/bin/bash

Var=CONTENU

echo

./Prog2.sh

isen@localhost:~$ cat Prog2.sh
#!/bin/bash

echo

isen@localhost:~$./Progil.sh
Progl : CONTENU

Prog2 :

I\

2

Variable visibility 4/4

Now ! Consider two scripts Progl.sh and Prog2.sh as bellow

isen@localhost:~$ cat Progl.sh
#!/bin/bash

Var=CONTENU

echo

source ./Prog2.sh
isen@localhost:~$ cat Prog2.sh
#!/bin/bash

echo

isen@localhost:~$./Progl.sh
Progl : CONTENU

Prog2 : CONTENU

© 00 N O O WN =

S
= O

Protect a variable : Exemples

© 0N O O & WN =

e T e
~N o ok W N = O

isen@localhost:~$ Var=

isen@localhost:~$ echo _FILE

ONE_FILE

isen@localhost:~$ Var=

isen@localhost:~$ echo _FILE
_FILE

isen@localhost:~$ echo _FILE

${Var} _FILE

isen@localhost:~$ echo $Var_FILE
(nohing because Var_FILE dont exist)
isen@localhost:~$ echo ${Var}_FILE
ONE_FILE

isen@localhost:~$1ls

C02 CO03 C04 data EXAM 01d ORIG

isen@localhost:~$ Var=$(1ls) #or Var="

isen@localhost:~$ echo $Var
C02 CO03 C04 data EXAM 01d ORIG

ls”

&

2

Scripting base

What is a script

Instead of launching the commands directly in a terminal, we can write a text file with

the shebang and the execution rights

username@hostname:~$ cat myfirstscript.sh
#!/bin/bash

echo toto
username@hostname:~$ chmod +x myfirstscript.sh
username@hostname:~$./myfirstscript.sh

toto

~No o W N =

Advantages/Disadvantages

P Advantages

Advantages/Disadvantages

P Advantages
P More readable

Advantages/Disadvantages

P Advantages
P More readable
» Saved

Advantages/Disadvantages

P Advantages
P More readable
P Saved
P Exportable

Advantages/Disadvantages

P Advantages
P More readable
P Saved
P Exportable
P Debugging

Advantages/Disadvantages

P Advantages
P More readable
P Saved
P Exportable
P Debugging
P Disadvantages

Advantages/Disadvantages

P Advantages
P More readable
P Saved
P Exportable
P Debugging
P Disadvantages
P Debugging

Variable of a script

Name Description

$0 the name of the current shell program.

$1..${n} the n parameters passed to the program (to the shell) when it is
called.

$# the number of parameters passed to the shell program call (not
included the $0 parameter)

$* the list of parameters passed to the shell program call (not
included the $0 parameter)

$$ the current process number (there is a unique number per process

$?

on the machine)

the error code of the last command executed.

Example of use

© 00 N O O WN -

— o e
w N = O

username@hostname:~$ cat mysecondscript.sh
#!/bin/bash

echo

echo

echo

false

echo ${7}

username@hostname:~$./mysecondscript.sh toto titi tutu
Thx to launch ./mysecondscript.sh

There are 3 arguments

They are : toto titi tutu but the second is titi

1

Kit

Survival

Golden rules

P Indent your script

Golden rules

P Indent your script
P Comment your script

Golden rules

P Indent your script
P Comment your script
P Use a Naming rule

Golden rules

P Indent your script
P Comment your script
P Use a Naming rule

P Declare your variable at the start of your script

Golden rules

P Indent your script

P Comment your script

P Use a Naming rule

P Declare your variable at the start of your script

P> Always test your entries

Golden rules

P Indent your script

P Comment your script

P Use a Naming rule

P Declare your variable at the start of your script
P> Always test your entries

P Give your script some “fresh air”

Golden rules

P Indent your script

P Comment your script

P Use a Naming rule

P Declare your variable at the start of your script

P> Always test your entries

P Give your script some “fresh air”

P> Test the return value of your SHELL commands ($?)

Golden rules

P Indent your script

P Comment your script

P Use a Naming rule

P Declare your variable at the start of your script

P> Always test your entries

P Give your script some “fresh air”

P> Test the return value of your SHELL commands ($?)
P Use the man, level 1 (try a man -k)

Golden rules

P Indent your script

P Comment your script

P Use a Naming rule

P Declare your variable at the start of your script

P> Always test your entries

P Give your script some “fresh air”

P> Test the return value of your SHELL commands ($?)

P Use the man, level 1 (try a man -k)

P Render your script executable : chmod +x Mynewscript.sh

Golden rules example 1/2

#BAD

if [[-f $titi]];then echo "your parameter is a file";cp $1 "$1".old;fi
#GOOD

if [[-f ${Nom_Fichier_Saisi}]]

then

echo "your parameter is a file"

cp $1 "${Nom_Fichier_Saisi}".old

0N O WN =

fi

Golden rules example 2/2

© 00N O 0B WN =

e
N = O

if your script is waiting for an argument representing a name of a file.

#Test of arguments
if [$# -1t 1]
then
echo "You must give an argument for the script"
exit 1
fi
#Test of the type of the first argument
if [-e $1 1]
then
echo "You must give an valid file name for the first argument for the script"

exit 2

Algo

IF Condition

IF condition
S50
——> Launch__action

END IF

Example of if condition

© 0 N O O & WN =

isen@localhost:~$ cat examplelIf.sh
#!/bin/bash
if [$1 -eq 1]; then
echo
fi
isen@localhost:~$ bash exampleIf.sh 2

isen@localhost:~$ bash exampleIf.sh 1

The first argument is 1

if /else condition

IF condition

SO

——> Launch__action

ELSE

——> Launch__action

END IF

Example of if /else condition

© 00 N O O WN =

=
= O

isen@localhost:~$ cat exampleIfElse.sh
#!/bin/bash
if [$1 -eq 1]; then
echo
else
echo
fi
isen@localhost:~$ exempleIfElse.sh 2
The first argument is not 1
isen@localhost:~$ exempleIfElse.sh 1

The first argument is 1

if /elif condition

IF condition

S0
——> lLaunch_action

ELSE IF other_condition

S0
——> Launch__action

END IF

Example of if /elif condition

© 00 N O O WN -

= e
N = O

isen@localhost:~$ examplelfellf.

#!/bin/bash
if [$1 -eq 1]1; then
echo
elif [$1 -eq 2]; then
echo
fi

isen@localhost:~$ exampleIfellf.
isen@localhost:~$ exampleIfellf.

The first argument is 1

isen@localhost:~$ exampleIfellf.

The first argument is 2

sh

sh
sh

sh

if /elif /else condition

IF condition
Y0

——> launch_action
ELSE IF other_condition
S0

——> lLaunch_action

ELSE
——> lLaunch_action

END IF

Exemple of condition if/elif /else

© 00N O O & WN -

e e e
o~ W NN = O

isen@localhost:~$ cat exampleIfelIfElse.sh
#!/bin/bash
if [$1 -eq 1]; then

echo

elif [$1 -eq 2]; then
echo

else
echo

fi

isen@localhost:~$ bash exampleIfelIfElse.sh 10
I do not understant

isen@localhost:~$ bash exampleIfellfElse.sh 1
The first argument is 1

isen@localhost:~$ bash xampleIfelIfElse.sh 2
The first argument is 2

N3SI

Tests - File

Operand Description example

-e filename true if filename exist [-e /etc/shadow |
-d filename true if filename is a directory [-d /tmp/trash]

-f filename true if filename is an ordinary file [-f /tmp/Log.txt |
-L filename true if filename is a symbolic link [-L /home]

-r filename true if filename is readable (r) [-r /boot/vmlinuz |
-w filename true if filename is modifiable (w) [-w /var/log]

-x filename true if filename is an executable (x) [-x /sbin/halt |

Tests - Strings

Operand Description example

-z txt true if the string is empty [-z 1

-n txt true if the string is NOT empty [-n 1

txt = txt true if the two string are equal [= 1

txt 1= txt true if the two string are NOT equal ¢ 1= 1

Tests - Numeric

Operand

Description

example

numl -eq num?
numl -ne num?2
numl -lt num2
numl -le num?2
numl -gt num2

numl -ge num?2

equality

not equal

lesser than (<)

lesser or equal (<=)
greater than (>)
greater or equal (>=)

[$Number -eq 42]
[$Number -ne 42]
[$Number -It 42]
[$Number -le 42]
[$Number -gt 42]
[$Number -ge 42]

Example of test (1/2)

N o o W N

#!/bin/bash
directory exzists ? 1/2
test -d /home/isen
rc=$7
if [$rc -ne 0]; then
echo "The directory /home/isen does not exist"

fi

Example de test (2/2)

© 00 N O OB WwN =

#!/bin/bash
directory ezists ? 2/2
if [-d "/home/isen"]; then

echo "the directory /home/isen exists"

fi
comparison of 2 strings
if ["toto" = "titi"]; then
echo "toto is not equal to titi"
fi

While loop

WHILE condition
DO
——> Launch__action

RESTART

Example of while loop (1/2)

© 00N O O & WN -

R e e e
A W N H O

isen@localhost:~$ cat while.sh
#!/bin/bash

a=0
while [$a -le 3]
do

echo

a=$(($a + 1))
done

isen@localhost:~$ bash while.sh
0

1
2
3

Example of while loop (2/2)

1 |while true; do
echo $RANDOM
3 | done

The bash is compiled as a 64-bit monothread. With this command your bash will use
100% of a CPU core. To protect your CPU, always put an “useless/time-out” action

while true; do
echo $RANDOM
sleep 1

A W N =

done

for loop

FOR variable IN valuel value2 value3
DO

——> Launch__action
NEXT_ACTION

Example of for loop (1/2)

© 00 N O O WN =

—
o

isen@localhost:~$ cat forl.sh
#!/bin/bash
for var in

echo 8

done

isen@localhost:~$ bash forl.sh

Var = valuel
Var = value2
Var = value3

Example of for loop (2/2)

To get closer to the c code (this syntax is not widely used in bash):

1

2 | isen@localhost:~$ cat for2.sh
3 |#!/bin/bash

4 |for i in $(seq 0 2)

5 |do

6 echo $i

7 | done

3

9 |isen@localhost:~$ bash for2.sh
10 |0

11 |1

12 |2

This syntax $(seq 0 3) is equivalent to ((i=0;i<=3;i++))

Case/Esac

© 00 N O O WN =

=
= O

case ${vars} in
1) commandil
commandlbis
2) command?2
command2bis
*) commanddefault
commanddefault?2

esac

Example of Case/Esac

© 00N O O & WN -

R e e e
A W N H O

isen@localhost:~$ cat myScriptCase.sh

#!/bin/bash

case ${1} in
toto) echo s
titi) echo HH
*) echo

esac

isen@localhost:~$ bash myScriptCase.sh toto
toto is a beautifull name

isen@localhost:~$ bash myScriptCase.sh titi
I prefer toto as a name

isen@localhost:~$ bash myScriptCase.sh Loic
i do not understand

BREAK/CONTINUE

© 0N O O & WN =

—
= O

isen@localhost:~$ cat for3.sh
#!/bin/bash

for var in valuel value2 value3 value4 valueb;
[=] && continue
[=] &% break

echo $var

done

isen@localhost:~$ bash for3.sh
valuel

value3

do

BREAK = stop the loop

CONTINUE = go to the next iterration

Process management

Process management

Linux being a multitasking system, several programs can run at the same time.

When a program is started, a process is created. This is an active entity that has
characteristics (priority, registers, ordinal counter, memory, etc.). Some characteristics

may change over time
The system identifies the processes using an identifier (PID = Process IDentification).
The management of processes in Linux is said to be hierarchical.

A process can itself create another process (fork + exec). The created process is called

a child process. The creator is called the parent process.

nice & renice

The nice and renice commands allow you to set or change the priority of a process.
The range of possible values is -20 (most favorable priority) to 19 (least favorable).

isen@localhost:~$ nice -n -20 find / -type f -name
isen@localhost:~$ renice 20 7643

kill

The kill command sends a signal to a process. Overlays to the kill command exist
killall, pgrep / pkill, xkill

1 | isen@localhost:~$ kill 456
2 |isen@localhost:~$ kill -9 -1

3 | isen@localhost:~$ pkill firefox

Managing tasks in an interactive session

Interactive processes are started and managed from the user’s terminal. There are 2

modes:

P Foreground mode

Managing tasks in an interactive session

Interactive processes are started and managed from the user’s terminal. There are 2

modes:
P Foreground mode

P Background mode

Managing tasks in an interactive session - Foreground mode

The process monopolizes the terminal until its termination

1 |isen@localhost:~$ sleep 10
Coool

Managing tasks in an interactive session - Mode background

The process works in parallel with the terminal

isen@localhost:~$ sleep 10 &
[1] 3384
3|8

The “ctrl-z" key sequence and the commands “jobs, bg, fg commands” allow you to
switch a process from one mode to the other.

Synthesis

N

bg /

- \
\\)

\\ / /trl +Z

running
(avant-plan)

Display the processes

A W N =

DO WN =

You can use the SHELL command ps to display all the processes currently in execution

on your computer

example to see the processes belonging to your current SHELL :

isen@localhost:~$ ps

3837 pts/2 00:00:00 bash
137967 pts/2 00:00:09 evince
144605 pts/2 00:00:00 ps

example to see the processes belonging to you current owner :

isen@localhost:~$ ps -u isen

PID TTY TIME CMD

2053 7 00:00:02 systemd
2054 7 00:00:00 (sd-pam)
2059 7 00:04:16 pulseaudio

N3SI

