Linux's advanced notions

Astier Guillaume, Lefebvre Loic, Morit Luca

10/10/2025

Math

The flows

ReGex

Grep

Sed

Math

Math in Bash base

Arithmetic operations in bash can only be performed on integers.

$((INT OPERATION_TYPE INT))

Ex 1: simple addition
username@hostname:~$ echo $((2 + 2))

4

username@hostname:~$ foo=$((2 + 2))
username@hostname:~$ echo $foo

4

username@hostname:~$ echo $(($foo + 2))
6

Math in Bash operation type

The operations type are :

P addition : +

Math in Bash operation type

The operations type are :
P addition : +

P substration : -

Math in Bash operation type

The operations type are :
P addition : +
P substration : -

P multiplication : *

Math in Bash operation type

The operations type are :
P addition : +
P substration : -
P multiplication : *

P division : /

Round in bash math

Bash rounds the result of operations “down” to get an integer.

username@hostname:~$ echo $((9 / 3))
3
username@hostname:~$ echo $((10 / 3))
3

Bc

If you need to perform arithmetic operation with float you need bc with its scale option

The syntax is as follows:

username@hostname:~$ echo
31333
username@hostname:~$ echo
3.33

username@hostname:~$ echo
3.3

Sequences

Sometimes it's usefull to generate a sequence of integer from a start to an end point.
You can use the seq command to do so.

Example :

username@hostname:~$ seq 1 10

© 00 N O O W N

[N
o

<)

The flows

The flows

Each process has 3 flows :

P The input stream “stdin”

The flows

Each process has 3 flows :

P The input stream “stdin”
P The standard output stream “stdout”

The flows

Each process has 3 flows :

P The input stream “stdin”
P The standard output stream “stdout”

P The error output stream “stderr”

Stdin

This is an invisible but very useful feed. It's an input data of a command, generally
from the keyboard or from another command.

Stdin (example)

Read from the keyboard gradually:

username@hostname:~$ sort << ENDSORT
> toto

> titi

> tata

> ENDSORT

tata

titi

toto

Terminal wait for some text. As long as the character string != keyword (here
ENDSORT), continue. All data sent to sort until ENDSORT keyword detected. The

result sort will be in its stdout. We can modify the stdout :

username@hostname:~$ sort << ENDSORT > file_sort.txt

N3SI

Stdout

This is the most visible flow. By default, it will be displayed on the screen.
It is possible to :

P send it in a new file : cmd > file

—— e ——

T~

Comanaez]| hure

commande

Stdout

This is the most visible flow. By default, it will be displayed on the screen.
It is possible to :

P send it in a new file : cmd > file

P send it at the end of a file : cmd >> file

—— e ——

N Fichir

T~

Comanaez]| hure

commande

Stdout

This is the most visible flow. By default, it will be displayed on the screen.
It is possible to :

P send it in a new file : cmd > file
P send it at the end of a file : cma >> file

P> send it to another command to make a chaining commands : cnd1 |cna2 (the

stdout of cmd1 will be the stdin of cmd?2)

N Fichir

T~

Comanaez]| hure

commande

Stdout example (1/2)

username@hostname:~$ echo "this is my stdout"
this is my stdout

Stdout example (2/2)

toto
tata

toto

1

username@hostname:

username@hostname:

username@hostname:

username@hostname:

echo -e
cat File.txt

cat File.txt | grep

cat File.txt | grep

>> File.txt

wC

-1

Stderr

This is the flow that the terminal displays during an error. For this flow it is possible to

P send it in a new file : cmd 2> file

Stderr

This is the flow that the terminal displays during an error. For this flow it is possible to

P send it in a new file : cmd 2> file

P send it at the end of a file : cmd 2>> file

Stderr

This is the flow that the terminal displays during an error. For this flow it is possible to

P send it in a new file : cmd 2> file
P send it at the end of a file : cmd 2>> file
P send it to stdout : cmd 2>&1 > file OF cnd &> file (the set of stderr and stdout will

be in file)

Stderr (example)

username@hostname:~$ 1s

File

Directory

username@hostname:~$ cat FileNotExist

cat: FileNotExist: No such file or directory
username@hostname:~$ cat FileNotExist 2> ./stderr.txt
username@hostname:~$ cat FileNotExist 1> ./stdout.txt
username@hostname:~$ cat stderr.txt

cat: FileNotExist: No such file or directory

username@hostname:~$ cat stdout.txt

username@hostname: "$

ReGex

The different types

ReGex allow you to match specifics patterns (like a phone number, an email address ...)
There are 2 types of regular expressions :

P> Basic regular expressions (vi, grep, expr, sed) : ERb

The different types

ReGex allow you to match specifics patterns (like a phone number, an email address ...)
There are 2 types of regular expressions :

P> Basic regular expressions (vi, grep, expr, sed) : ERb
P> Extended regular expressions (grep -E, egrep, awk) : ERe

The keywords of the regex

p = Start of line : ““toto”

The keywords of the regex

p = Start of line ; ““toto”
P “$" = End of line : “toto$”

The keywords of the regex

p = Start of line ; ““toto”
P “$" = End of line : “toto$”
P “" = Any character

The keywords of the regex

P “°" = Start of line : ““toto”
P “$" = End of line : “toto$”
P “" = Any character

P “?" = 0 or 1 time the previous character or grouping : “7t”

The keywords of the regex

P “7" = Start of line : ““toto”

P “$" = End of line : “toto$”

P “" = Any character

P “?" = 0 or 1 time the previous character or grouping : “7t”

P “*" = 0 to n times the previous character or grouping : “*t”

The keywords of the regex

P “°" = Start of line : ““toto”
P “$" = End of line : “toto$”

P “" = Any character
P “?" = 0 or 1 time the previous character or grouping : “7t”
P “*" = 0 to n times the previous character or grouping : “*t”

P “+" =1 to n times the previous character or grouping : “+t”

The keywords of the regex

P “°" = Start of line : ““toto”
P “$" = End of line : “toto$”

P “" = Any character

P “?" = 0 or 1 time the previous character or grouping : “7t”
P “*" = 0 to n times the previous character or grouping : “*t”
P “+" =1 to n times the previous character or grouping : “+t”

P “\" = Protection of a special character

The keywords of the regex

P “°" = Start of line : ““toto”
P “$" = End of line : “toto$”

P “" = Any character

P “?" = 0 or 1 time the previous character or grouping : “7t”
P “*" = 0 to n times the previous character or grouping : “*t”
P “+" =1 to n times the previous character or grouping : “+t”
P “\" = Protection of a special character

P “[list_of_chars]” = A quoted character in the list : “[a-z]” “[A-Z]" “[0-9]"

The keywords of the regex

P “°" = Start of line : ““toto”
P “$" = End of line : “toto$”

P “" = Any character

P “?" = 0 or 1 time the previous character or grouping : “7t”
P “*" = 0 to n times the previous character or grouping : “*t”
P “+" =1 to n times the previous character or grouping : “+t”
P “\" = Protection of a special character

P “[list_of_chars]” = A quoted character in the list : “[a-z]” “[A-Z]" “[0-9]"
P “[“list_of_chars]” = A character that is not mentioned in the list : “[70-9]"

The keywords of the regex

P “°" = Start of line : ““toto”
P “$" = End of line : “toto$”

P “" = Any character

P “?" = 0 or 1 time the previous character or grouping : “7t”
P “*" = 0 to n times the previous character or grouping : “*t”
P “+" =1 to n times the previous character or grouping : “+t”
P “\" = Protection of a special character

P “[list_of_chars]” = A quoted character in the list : “[a-z]” “[A-Z]" “[0-9]"
P “[“list_of_chars]” = A character that is not mentioned in the list : “[70-9]"
P “(PATERN){n}" = Number of times of patern (ERe) : “(ti){2}"

Example of ReGex (1/3)

Let's take this text file as an example :
toto likes titi

Isen 2021
Toto likes titi

P Find lines that start with toto and end with titi

isen@isen : cat exampleRegex.txt
toto likes titi
Isen 2021

Toto likes titi
isen@isen : grep exampleRegex.txt
toto likes titi

Example of ReGex (2/3)

P Find lines that start with a capital letter

isen@isen : cat exampleRegex.txt
toto likes titi

Isen 2021

Toto likes titi

isen@isen : grep exampleRegex.txt
Isen 2021

Toto likes titi

Example of ReGex (3/3)

P Find lines that contain “to” 2 times

isen@isen : cat exampleRegex.txt

toto likes titi

Isen 2021
Toto likes titi
isen@isen : grep -E exampleRegex.txt

toto likes titi

Grep

Introduction

Grep command can be used to find or search a regular expression or a string in a text
file.

Searching in a specific file

Searching the pattern “Toto"” in the file exempleRegex.txt.

isen@isen : grep exempleRegex.txt
Toto love titi

Totope

Searching recursivly

Searching the pattern “Toto” recursivly in all files in /home/isen directory and sub
directory.

isen@isen : grep -r /home/isen
Toto love titi

Totope

Toto hate titi

lgnore case sensitivity

Searching the pattern “toto” by ignoring case sensitivity in the file exempleRegex.txt.

isen@isen : grep -i exempleRegex.txt
Toto love titi

Totope

toto tata

TOTo titi

Sed

Introduction

Sed is a command that allows manipulation of text file from regular expression.

By default sed displays the result in the stdout. To do the action directly in the file you
need the option -i.

Substitution

Change one patern by another.

sed

isen@isen : cat exampleRegex.txt

toto likes titi

Isen 2021

Toto likes titi

isen@isen : sed exampleRegex.txt
toto likes 1loic

Isen 2021

Toto likes loic

Insert

Add a line before the wanted patern.

sed

isen@isen cat exampleRegex.txt

toto likes titi

Isen 2021

Toto likes titi

isen@isen sed exampleRegex.txt
toto likes titi

Isen 2021

Titi

Toto likes

titi

Append

Add a line after the wanted patern.

sed

isen@isen cat exampleRegex.txt

toto likes titi

Isen 2021

Toto likes titi

isen@isen sed exampleRegex.txt
toto likes titi

Titi

Isen 2021

Toto likes

titi

Delete

Delete a line containing a pattern (by modifying permanently the file with -i option).

sed

isen@isen : cat exampleRegex.txt

toto likes titi

Isen 2021

Toto likes titi

isen@isen : sed -i exampleRegex.txt
isen@isen : cat exampleRegex.txt

Isen 2021

