
Labs - Linux’s advanced notions

Astier Guillaume, Lefebvre Loic, Morit Luca

10/10/2025



Math’s commands

The flows

ReGex / Sed



Math’s commands



Math’s commands

▶ Perform the following calculation and redirect the stdout to a file named
“calculation1.txt” : 10 + 24 - 5 / 11

▶ Perform the previous calculation with 4 numbers after the decimal point and
redirect the output to a file named “calculation2.txt”

▶ Compare the result
▶ Perform a sequence of numbers from 1 to 100 with a step of 6 and redirect the

output to a file named “sequence1.txt”
▶ Perform the previous sequence and adapt the output format to separe numbers

with ‘;’ and redirect the output on the “sequence1.txt” file (without deleting the
previous sequence in the file)



Math’s commands

▶ Perform the following calculation and redirect the stdout to a file named
“calculation1.txt” : 10 + 24 - 5 / 11

▶ Perform the previous calculation with 4 numbers after the decimal point and
redirect the output to a file named “calculation2.txt”

▶ Compare the result
▶ Perform a sequence of numbers from 1 to 100 with a step of 6 and redirect the

output to a file named “sequence1.txt”
▶ Perform the previous sequence and adapt the output format to separe numbers

with ‘;’ and redirect the output on the “sequence1.txt” file (without deleting the
previous sequence in the file)



Math’s commands

▶ Perform the following calculation and redirect the stdout to a file named
“calculation1.txt” : 10 + 24 - 5 / 11

▶ Perform the previous calculation with 4 numbers after the decimal point and
redirect the output to a file named “calculation2.txt”

▶ Compare the result

▶ Perform a sequence of numbers from 1 to 100 with a step of 6 and redirect the
output to a file named “sequence1.txt”

▶ Perform the previous sequence and adapt the output format to separe numbers
with ‘;’ and redirect the output on the “sequence1.txt” file (without deleting the
previous sequence in the file)



Math’s commands

▶ Perform the following calculation and redirect the stdout to a file named
“calculation1.txt” : 10 + 24 - 5 / 11

▶ Perform the previous calculation with 4 numbers after the decimal point and
redirect the output to a file named “calculation2.txt”

▶ Compare the result
▶ Perform a sequence of numbers from 1 to 100 with a step of 6 and redirect the

output to a file named “sequence1.txt”

▶ Perform the previous sequence and adapt the output format to separe numbers
with ‘;’ and redirect the output on the “sequence1.txt” file (without deleting the
previous sequence in the file)



Math’s commands

▶ Perform the following calculation and redirect the stdout to a file named
“calculation1.txt” : 10 + 24 - 5 / 11

▶ Perform the previous calculation with 4 numbers after the decimal point and
redirect the output to a file named “calculation2.txt”

▶ Compare the result
▶ Perform a sequence of numbers from 1 to 100 with a step of 6 and redirect the

output to a file named “sequence1.txt”
▶ Perform the previous sequence and adapt the output format to separe numbers

with ‘;’ and redirect the output on the “sequence1.txt” file (without deleting the
previous sequence in the file)



The flows



The flows
▶ Redirect the stdout of the following command echo -e "un\ndeux\ntrois\nquatre" in a

file named Count.txt

▶ Redirect the stdout of the following command echo -e "cinq\nsix" at the end of
Count.txt file (don’t erase the content of the file !)

▶ Display the content of Count.txt in stdout
▶ Combine the two SHELL COMMAND cat and wc (redirect stdout of cat

command in stdin of wc command) to count the number of lines in Count.txt
▶ With the SHELL command find, locate Count.txt
▶ With the precedent command redirect the stdout flow in LocateCountFile.txt file
▶ List files in a non existing directory and redirect stderr flow in /dev/null to get a

clear result
▶ List files in a non existing directory and redirect stdout and stderr flows in

KoList.txt
▶ Use the SHELL cat command to populate a file named Myletter.txt with input

(stdin) from the user and ending by the string “FIN” Example :

username@hostname:~$ cat [...]
>Hello,
>comment vas tu
>FIN



The flows
▶ Redirect the stdout of the following command echo -e "un\ndeux\ntrois\nquatre" in a

file named Count.txt
▶ Redirect the stdout of the following command echo -e "cinq\nsix" at the end of

Count.txt file (don’t erase the content of the file !)

▶ Display the content of Count.txt in stdout
▶ Combine the two SHELL COMMAND cat and wc (redirect stdout of cat

command in stdin of wc command) to count the number of lines in Count.txt
▶ With the SHELL command find, locate Count.txt
▶ With the precedent command redirect the stdout flow in LocateCountFile.txt file
▶ List files in a non existing directory and redirect stderr flow in /dev/null to get a

clear result
▶ List files in a non existing directory and redirect stdout and stderr flows in

KoList.txt
▶ Use the SHELL cat command to populate a file named Myletter.txt with input

(stdin) from the user and ending by the string “FIN” Example :

username@hostname:~$ cat [...]
>Hello,
>comment vas tu
>FIN



The flows
▶ Redirect the stdout of the following command echo -e "un\ndeux\ntrois\nquatre" in a

file named Count.txt
▶ Redirect the stdout of the following command echo -e "cinq\nsix" at the end of

Count.txt file (don’t erase the content of the file !)
▶ Display the content of Count.txt in stdout

▶ Combine the two SHELL COMMAND cat and wc (redirect stdout of cat
command in stdin of wc command) to count the number of lines in Count.txt

▶ With the SHELL command find, locate Count.txt
▶ With the precedent command redirect the stdout flow in LocateCountFile.txt file
▶ List files in a non existing directory and redirect stderr flow in /dev/null to get a

clear result
▶ List files in a non existing directory and redirect stdout and stderr flows in

KoList.txt
▶ Use the SHELL cat command to populate a file named Myletter.txt with input

(stdin) from the user and ending by the string “FIN” Example :

username@hostname:~$ cat [...]
>Hello,
>comment vas tu
>FIN



The flows
▶ Redirect the stdout of the following command echo -e "un\ndeux\ntrois\nquatre" in a

file named Count.txt
▶ Redirect the stdout of the following command echo -e "cinq\nsix" at the end of

Count.txt file (don’t erase the content of the file !)
▶ Display the content of Count.txt in stdout
▶ Combine the two SHELL COMMAND cat and wc (redirect stdout of cat

command in stdin of wc command) to count the number of lines in Count.txt

▶ With the SHELL command find, locate Count.txt
▶ With the precedent command redirect the stdout flow in LocateCountFile.txt file
▶ List files in a non existing directory and redirect stderr flow in /dev/null to get a

clear result
▶ List files in a non existing directory and redirect stdout and stderr flows in

KoList.txt
▶ Use the SHELL cat command to populate a file named Myletter.txt with input

(stdin) from the user and ending by the string “FIN” Example :

username@hostname:~$ cat [...]
>Hello,
>comment vas tu
>FIN



The flows
▶ Redirect the stdout of the following command echo -e "un\ndeux\ntrois\nquatre" in a

file named Count.txt
▶ Redirect the stdout of the following command echo -e "cinq\nsix" at the end of

Count.txt file (don’t erase the content of the file !)
▶ Display the content of Count.txt in stdout
▶ Combine the two SHELL COMMAND cat and wc (redirect stdout of cat

command in stdin of wc command) to count the number of lines in Count.txt
▶ With the SHELL command find, locate Count.txt

▶ With the precedent command redirect the stdout flow in LocateCountFile.txt file
▶ List files in a non existing directory and redirect stderr flow in /dev/null to get a

clear result
▶ List files in a non existing directory and redirect stdout and stderr flows in

KoList.txt
▶ Use the SHELL cat command to populate a file named Myletter.txt with input

(stdin) from the user and ending by the string “FIN” Example :

username@hostname:~$ cat [...]
>Hello,
>comment vas tu
>FIN



The flows
▶ Redirect the stdout of the following command echo -e "un\ndeux\ntrois\nquatre" in a

file named Count.txt
▶ Redirect the stdout of the following command echo -e "cinq\nsix" at the end of

Count.txt file (don’t erase the content of the file !)
▶ Display the content of Count.txt in stdout
▶ Combine the two SHELL COMMAND cat and wc (redirect stdout of cat

command in stdin of wc command) to count the number of lines in Count.txt
▶ With the SHELL command find, locate Count.txt
▶ With the precedent command redirect the stdout flow in LocateCountFile.txt file

▶ List files in a non existing directory and redirect stderr flow in /dev/null to get a
clear result

▶ List files in a non existing directory and redirect stdout and stderr flows in
KoList.txt

▶ Use the SHELL cat command to populate a file named Myletter.txt with input
(stdin) from the user and ending by the string “FIN” Example :

username@hostname:~$ cat [...]
>Hello,
>comment vas tu
>FIN



The flows
▶ Redirect the stdout of the following command echo -e "un\ndeux\ntrois\nquatre" in a

file named Count.txt
▶ Redirect the stdout of the following command echo -e "cinq\nsix" at the end of

Count.txt file (don’t erase the content of the file !)
▶ Display the content of Count.txt in stdout
▶ Combine the two SHELL COMMAND cat and wc (redirect stdout of cat

command in stdin of wc command) to count the number of lines in Count.txt
▶ With the SHELL command find, locate Count.txt
▶ With the precedent command redirect the stdout flow in LocateCountFile.txt file
▶ List files in a non existing directory and redirect stderr flow in /dev/null to get a

clear result

▶ List files in a non existing directory and redirect stdout and stderr flows in
KoList.txt

▶ Use the SHELL cat command to populate a file named Myletter.txt with input
(stdin) from the user and ending by the string “FIN” Example :

username@hostname:~$ cat [...]
>Hello,
>comment vas tu
>FIN



The flows
▶ Redirect the stdout of the following command echo -e "un\ndeux\ntrois\nquatre" in a

file named Count.txt
▶ Redirect the stdout of the following command echo -e "cinq\nsix" at the end of

Count.txt file (don’t erase the content of the file !)
▶ Display the content of Count.txt in stdout
▶ Combine the two SHELL COMMAND cat and wc (redirect stdout of cat

command in stdin of wc command) to count the number of lines in Count.txt
▶ With the SHELL command find, locate Count.txt
▶ With the precedent command redirect the stdout flow in LocateCountFile.txt file
▶ List files in a non existing directory and redirect stderr flow in /dev/null to get a

clear result
▶ List files in a non existing directory and redirect stdout and stderr flows in

KoList.txt

▶ Use the SHELL cat command to populate a file named Myletter.txt with input
(stdin) from the user and ending by the string “FIN” Example :

username@hostname:~$ cat [...]
>Hello,
>comment vas tu
>FIN



The flows
▶ Redirect the stdout of the following command echo -e "un\ndeux\ntrois\nquatre" in a

file named Count.txt
▶ Redirect the stdout of the following command echo -e "cinq\nsix" at the end of

Count.txt file (don’t erase the content of the file !)
▶ Display the content of Count.txt in stdout
▶ Combine the two SHELL COMMAND cat and wc (redirect stdout of cat

command in stdin of wc command) to count the number of lines in Count.txt
▶ With the SHELL command find, locate Count.txt
▶ With the precedent command redirect the stdout flow in LocateCountFile.txt file
▶ List files in a non existing directory and redirect stderr flow in /dev/null to get a

clear result
▶ List files in a non existing directory and redirect stdout and stderr flows in

KoList.txt
▶ Use the SHELL cat command to populate a file named Myletter.txt with input

(stdin) from the user and ending by the string “FIN” Example :
username@hostname:~$ cat [...]
>Hello,
>comment vas tu
>FIN



ReGex / Sed



Text file

▶ Put this content in the /home/isen/regex.txt file.
Toto loves titi
or so
TOTO LOVE TITI
and again
TOTO or Mr TOTO loves TITI Ms TITI
/NAME/ likes bash
I do not know what to say To_Delete
and you what do you mean?
/NAME/ toto /NAME/ titi /NAME/
toto titi toto titi toto titi to-ti



Grep

▶ Show lines contains the string “toto” with non case sensitivity

▶ Show lines that start with ‘/’

▶ Show lines that end with ‘?’

▶ Show lines that contain capital letters

▶ Show lines that contain an ‘A’ OR a ‘b’

▶ Show lines that contain an ‘A’ AND a ‘b’

▶ Show lines that have 2 ‘t’



Grep

▶ Show lines contains the string “toto” with non case sensitivity

▶ Show lines that start with ‘/’

▶ Show lines that end with ‘?’

▶ Show lines that contain capital letters

▶ Show lines that contain an ‘A’ OR a ‘b’

▶ Show lines that contain an ‘A’ AND a ‘b’

▶ Show lines that have 2 ‘t’



Grep

▶ Show lines contains the string “toto” with non case sensitivity

▶ Show lines that start with ‘/’

▶ Show lines that end with ‘?’

▶ Show lines that contain capital letters

▶ Show lines that contain an ‘A’ OR a ‘b’

▶ Show lines that contain an ‘A’ AND a ‘b’

▶ Show lines that have 2 ‘t’



Grep

▶ Show lines contains the string “toto” with non case sensitivity

▶ Show lines that start with ‘/’

▶ Show lines that end with ‘?’

▶ Show lines that contain capital letters

▶ Show lines that contain an ‘A’ OR a ‘b’

▶ Show lines that contain an ‘A’ AND a ‘b’

▶ Show lines that have 2 ‘t’



Grep

▶ Show lines contains the string “toto” with non case sensitivity

▶ Show lines that start with ‘/’

▶ Show lines that end with ‘?’

▶ Show lines that contain capital letters

▶ Show lines that contain an ‘A’ OR a ‘b’

▶ Show lines that contain an ‘A’ AND a ‘b’

▶ Show lines that have 2 ‘t’



Grep

▶ Show lines contains the string “toto” with non case sensitivity

▶ Show lines that start with ‘/’

▶ Show lines that end with ‘?’

▶ Show lines that contain capital letters

▶ Show lines that contain an ‘A’ OR a ‘b’

▶ Show lines that contain an ‘A’ AND a ‘b’

▶ Show lines that have 2 ‘t’



Grep

▶ Show lines contains the string “toto” with non case sensitivity

▶ Show lines that start with ‘/’

▶ Show lines that end with ‘?’

▶ Show lines that contain capital letters

▶ Show lines that contain an ‘A’ OR a ‘b’

▶ Show lines that contain an ‘A’ AND a ‘b’

▶ Show lines that have 2 ‘t’



Sed

▶ Replace the first occurrence in each line of the word TOTO by TITI

▶ Replace all ‘/NAME/’ with your first name

▶ Delete all lines that contain ‘To_Delete’

▶ Add a line containing ‘ERROR’ before each line which does not have a capital
letter at the beginning

▶ Replace ‘?’ by ‘!’

▶ Replace ‘titi’ by ‘toto’ and ‘toto’ by ‘titi’



Sed

▶ Replace the first occurrence in each line of the word TOTO by TITI

▶ Replace all ‘/NAME/’ with your first name

▶ Delete all lines that contain ‘To_Delete’

▶ Add a line containing ‘ERROR’ before each line which does not have a capital
letter at the beginning

▶ Replace ‘?’ by ‘!’

▶ Replace ‘titi’ by ‘toto’ and ‘toto’ by ‘titi’



Sed

▶ Replace the first occurrence in each line of the word TOTO by TITI

▶ Replace all ‘/NAME/’ with your first name

▶ Delete all lines that contain ‘To_Delete’

▶ Add a line containing ‘ERROR’ before each line which does not have a capital
letter at the beginning

▶ Replace ‘?’ by ‘!’

▶ Replace ‘titi’ by ‘toto’ and ‘toto’ by ‘titi’



Sed

▶ Replace the first occurrence in each line of the word TOTO by TITI

▶ Replace all ‘/NAME/’ with your first name

▶ Delete all lines that contain ‘To_Delete’

▶ Add a line containing ‘ERROR’ before each line which does not have a capital
letter at the beginning

▶ Replace ‘?’ by ‘!’

▶ Replace ‘titi’ by ‘toto’ and ‘toto’ by ‘titi’



Sed

▶ Replace the first occurrence in each line of the word TOTO by TITI

▶ Replace all ‘/NAME/’ with your first name

▶ Delete all lines that contain ‘To_Delete’

▶ Add a line containing ‘ERROR’ before each line which does not have a capital
letter at the beginning

▶ Replace ‘?’ by ‘!’

▶ Replace ‘titi’ by ‘toto’ and ‘toto’ by ‘titi’



Sed

▶ Replace the first occurrence in each line of the word TOTO by TITI

▶ Replace all ‘/NAME/’ with your first name

▶ Delete all lines that contain ‘To_Delete’

▶ Add a line containing ‘ERROR’ before each line which does not have a capital
letter at the beginning

▶ Replace ‘?’ by ‘!’

▶ Replace ‘titi’ by ‘toto’ and ‘toto’ by ‘titi’



Text file
▶ Put this content in the /home/isen/advancedRegex.txt file.

Antoine Dupont
Léon Marchand
0687548965
Jean NEYMAR
BobMarley
6985478954
Baptiste& Serîn
jean.neymar@gmail.com
vincentlagaffe.outlook/com
078565321454
192.168.0.1
456.567.0.1
192.168.0.1.2
d8:43:ae:2e:03:01
987:43:ae:2e:03:01



Advanced ReGex

▶ Write the regex to check lines that contains Prename and Name (Prename and
Name are strings separating with a space, containing only letters and strating with
a capital letters)

▶ Write the regex to check lines that contains a phone number (Phone number is a
string containing only 10 numbers and starting with “06” or “07”)

▶ Write the regex to check lines that contains an email address (Email address is a
string containing identifier, provider and a domain respectingly separated by a “@”
and “.”. Exemple : toto83@gmail.com)



Advanced ReGex

▶ Write the regex to check lines that contains Prename and Name (Prename and
Name are strings separating with a space, containing only letters and strating with
a capital letters)

▶ Write the regex to check lines that contains a phone number (Phone number is a
string containing only 10 numbers and starting with “06” or “07”)

▶ Write the regex to check lines that contains an email address (Email address is a
string containing identifier, provider and a domain respectingly separated by a “@”
and “.”. Exemple : toto83@gmail.com)



Advanced ReGex

▶ Write the regex to check lines that contains Prename and Name (Prename and
Name are strings separating with a space, containing only letters and strating with
a capital letters)

▶ Write the regex to check lines that contains a phone number (Phone number is a
string containing only 10 numbers and starting with “06” or “07”)

▶ Write the regex to check lines that contains an email address (Email address is a
string containing identifier, provider and a domain respectingly separated by a “@”
and “.”. Exemple : toto83@gmail.com)



Bonus

▶ Write the regex to check if a string is a @IP (4 digit separated with ‘.’, each digit is
between 0 and 255)

▶ Write the regex to check if a string is a @MAC (6 digit separated with ‘:’, each
digit is coded in hexa)



Bonus

▶ Write the regex to check if a string is a @IP (4 digit separated with ‘.’, each digit is
between 0 and 255)

▶ Write the regex to check if a string is a @MAC (6 digit separated with ‘:’, each
digit is coded in hexa)


