
Practice Course

Astier Guillaume, Lefebvre Loic, Morit Luca

24/10/2025

How to have a beautiful source code

Script Construction

How to have a beautiful source code

The return code

You have to control the return code ($?). In function you must use the command
return <ReturnCode>, and in the main function you must use the command
exit <ReturnCode>

Beware the return command immediately exits the function. The exit command
terminates the script (even if the exit command is inside a function)

Check your input

However the input data is retrieved, it should always be checked.

▶ if a file must be read, it must already be known whether the file exists

▶ if you have to do an arithmetic operation, you have to know if it’s numbers (pay
attention to the division by 0)

▶ …

A lot of checking exist in test command (see Comparison rules).

Check your input

However the input data is retrieved, it should always be checked.

▶ if a file must be read, it must already be known whether the file exists
▶ if you have to do an arithmetic operation, you have to know if it’s numbers (pay

attention to the division by 0)

▶ …

A lot of checking exist in test command (see Comparison rules).

Check your input

However the input data is retrieved, it should always be checked.

▶ if a file must be read, it must already be known whether the file exists
▶ if you have to do an arithmetic operation, you have to know if it’s numbers (pay

attention to the division by 0)
▶ …

A lot of checking exist in test command (see Comparison rules).

Indentation

Do you prefer this code :
function action () { echo -ne "${1}\t";shift;${*};rc=${?};\
[${rc} -eq 0] && echo '[OK]' || \
echo '[KO]';return ${rc};}

or this ?

function action () {
echo -ne "${1}\t"
shift
${*}
rc=${?}
[${rc} -eq 0] && echo '[OK]' || echo '[KO]'
return ${rc}

}

I prefer the second script. The intention is a matter of taste. But it must at least be
homogeneous throughout the script. remember to ventilate your code (an empty line is
not expensive, but it makes the code more readable).

Comments

Add a lot of comments in your script. Why ?

▶ if you take your code after 6 months, you will understand it more easily

▶ if you give your code to someone else, they will understand it more easily
▶ the user of your code will understand these errors more easily
▶ …

Comments

Add a lot of comments in your script. Why ?

▶ if you take your code after 6 months, you will understand it more easily
▶ if you give your code to someone else, they will understand it more easily

▶ the user of your code will understand these errors more easily
▶ …

Comments

Add a lot of comments in your script. Why ?

▶ if you take your code after 6 months, you will understand it more easily
▶ if you give your code to someone else, they will understand it more easily
▶ the user of your code will understand these errors more easily

▶ …

Comments

Add a lot of comments in your script. Why ?

▶ if you take your code after 6 months, you will understand it more easily
▶ if you give your code to someone else, they will understand it more easily
▶ the user of your code will understand these errors more easily
▶ …

Script Construction

Script Construction

All project in test / production enivronement are based on requirement.

This requierments are necessary to ve sure that the final creation do what we/they
want.

Requierement

this script aims to classify the former students present during a meeting

Here we ll create a script with this requierement :

▶ The script name is : alumni-reunion.sh

▶ The script must parse a csv file given in the first arguement

▶ the csv file format is : NAME;SURNAME;YEAR;LEVEL (file path :
/data/admin/list/student-list)

▶ for each line in the csv file the script the script ask : “SURNAME NAME is
present ? (y/n)”

Requierement

this script aims to classify the former students present during a meeting

Here we ll create a script with this requierement :

▶ The script name is : alumni-reunion.sh

▶ The script must parse a csv file given in the first arguement

▶ the csv file format is : NAME;SURNAME;YEAR;LEVEL (file path :
/data/admin/list/student-list)

▶ for each line in the csv file the script the script ask : “SURNAME NAME is
present ? (y/n)”

Requierement

this script aims to classify the former students present during a meeting

Here we ll create a script with this requierement :

▶ The script name is : alumni-reunion.sh

▶ The script must parse a csv file given in the first arguement

▶ the csv file format is : NAME;SURNAME;YEAR;LEVEL (file path :
/data/admin/list/student-list)

▶ for each line in the csv file the script the script ask : “SURNAME NAME is
present ? (y/n)”

Requierement

this script aims to classify the former students present during a meeting

Here we ll create a script with this requierement :

▶ The script name is : alumni-reunion.sh

▶ The script must parse a csv file given in the first arguement

▶ the csv file format is : NAME;SURNAME;YEAR;LEVEL (file path :
/data/admin/list/student-list)

▶ for each line in the csv file the script the script ask : “SURNAME NAME is
present ? (y/n)”

▶ The answer have to be y or n and you don’t need to use Enter key to valid

▶ The script have to create a directory with the date (ex :
/data/admin/result/2022-09-27)

▶ Each time the answer is y or n you have to append in the first arguement in a new
file (dir path : /data/admin/result/YYYY-MM-DD/)

▶ The results files are sorted by the group [year][level] (ex :
/data/admin/result/YYYY-MM-DD/student-list_2020-M1) .

▶ The format of the contents files is :
NAME;SURNAME;YEAR;LEVEL;[here|absent]

▶ The script end with a sumury for all created files and the sum of present/absent
count (need a header : FILE | present | absent |

▶ The answer have to be y or n and you don’t need to use Enter key to valid

▶ The script have to create a directory with the date (ex :
/data/admin/result/2022-09-27)

▶ Each time the answer is y or n you have to append in the first arguement in a new
file (dir path : /data/admin/result/YYYY-MM-DD/)

▶ The results files are sorted by the group [year][level] (ex :
/data/admin/result/YYYY-MM-DD/student-list_2020-M1) .

▶ The format of the contents files is :
NAME;SURNAME;YEAR;LEVEL;[here|absent]

▶ The script end with a sumury for all created files and the sum of present/absent
count (need a header : FILE | present | absent |

▶ The answer have to be y or n and you don’t need to use Enter key to valid

▶ The script have to create a directory with the date (ex :
/data/admin/result/2022-09-27)

▶ Each time the answer is y or n you have to append in the first arguement in a new
file (dir path : /data/admin/result/YYYY-MM-DD/)

▶ The results files are sorted by the group [year][level] (ex :
/data/admin/result/YYYY-MM-DD/student-list_2020-M1) .

▶ The format of the contents files is :
NAME;SURNAME;YEAR;LEVEL;[here|absent]

▶ The script end with a sumury for all created files and the sum of present/absent
count (need a header : FILE | present | absent |

▶ The answer have to be y or n and you don’t need to use Enter key to valid

▶ The script have to create a directory with the date (ex :
/data/admin/result/2022-09-27)

▶ Each time the answer is y or n you have to append in the first arguement in a new
file (dir path : /data/admin/result/YYYY-MM-DD/)

▶ The results files are sorted by the group [year][level] (ex :
/data/admin/result/YYYY-MM-DD/student-list_2020-M1) .

▶ The format of the contents files is :
NAME;SURNAME;YEAR;LEVEL;[here|absent]

▶ The script end with a sumury for all created files and the sum of present/absent
count (need a header : FILE | present | absent |

▶ The answer have to be y or n and you don’t need to use Enter key to valid

▶ The script have to create a directory with the date (ex :
/data/admin/result/2022-09-27)

▶ Each time the answer is y or n you have to append in the first arguement in a new
file (dir path : /data/admin/result/YYYY-MM-DD/)

▶ The results files are sorted by the group [year][level] (ex :
/data/admin/result/YYYY-MM-DD/student-list_2020-M1) .

▶ The format of the contents files is :
NAME;SURNAME;YEAR;LEVEL;[here|absent]

▶ The script end with a sumury for all created files and the sum of present/absent
count (need a header : FILE | present | absent |

▶ The answer have to be y or n and you don’t need to use Enter key to valid

▶ The script have to create a directory with the date (ex :
/data/admin/result/2022-09-27)

▶ Each time the answer is y or n you have to append in the first arguement in a new
file (dir path : /data/admin/result/YYYY-MM-DD/)

▶ The results files are sorted by the group [year][level] (ex :
/data/admin/result/YYYY-MM-DD/student-list_2020-M1) .

▶ The format of the contents files is :
NAME;SURNAME;YEAR;LEVEL;[here|absent]

▶ The script end with a sumury for all created files and the sum of present/absent
count (need a header : FILE | present | absent |

Algo

Classic Function

The classic functions needed in the script are the following:

▶ Check or Action to verify each command

▶ Help or Usage to print information about the script himself

▶ ArgCheck to check the arguement or the type of arguement

Classic Function

The classic functions needed in the script are the following:

▶ Check or Action to verify each command

▶ Help or Usage to print information about the script himself

▶ ArgCheck to check the arguement or the type of arguement

Classic Function

The classic functions needed in the script are the following:

▶ Check or Action to verify each command

▶ Help or Usage to print information about the script himself

▶ ArgCheck to check the arguement or the type of arguement

Specific Function

We need for each script to analyse the requierments to translate each of them in a
function or a bash code.

▶ LineToVar : translate each column line in a specific variable (Name=[…]
Surname=[…])

▶ Question : ask to the user the question “SURNAME NAME is present ? (y/n)”
and echo the result translated in STDOUT of the function

▶ NameFileOutput : Create the variable output file
/data/admin/result/student-list_YYYY-LEVEL with the data of LineToVar and
the result of Question

▶ Resume : Print all the created file with the sum of present/absent count (like :
FILE : 12 2)

Specific Function

We need for each script to analyse the requierments to translate each of them in a
function or a bash code.

▶ LineToVar : translate each column line in a specific variable (Name=[…]
Surname=[…])

▶ Question : ask to the user the question “SURNAME NAME is present ? (y/n)”
and echo the result translated in STDOUT of the function

▶ NameFileOutput : Create the variable output file
/data/admin/result/student-list_YYYY-LEVEL with the data of LineToVar and
the result of Question

▶ Resume : Print all the created file with the sum of present/absent count (like :
FILE : 12 2)

Specific Function

We need for each script to analyse the requierments to translate each of them in a
function or a bash code.

▶ LineToVar : translate each column line in a specific variable (Name=[…]
Surname=[…])

▶ Question : ask to the user the question “SURNAME NAME is present ? (y/n)”
and echo the result translated in STDOUT of the function

▶ NameFileOutput : Create the variable output file
/data/admin/result/student-list_YYYY-LEVEL with the data of LineToVar and
the result of Question

▶ Resume : Print all the created file with the sum of present/absent count (like :
FILE : 12 2)

Specific Function

We need for each script to analyse the requierments to translate each of them in a
function or a bash code.

▶ LineToVar : translate each column line in a specific variable (Name=[…]
Surname=[…])

▶ Question : ask to the user the question “SURNAME NAME is present ? (y/n)”
and echo the result translated in STDOUT of the function

▶ NameFileOutput : Create the variable output file
/data/admin/result/student-list_YYYY-LEVEL with the data of LineToVar and
the result of Question

▶ Resume : Print all the created file with the sum of present/absent count (like :
FILE : 12 2)

Output

Output (First start)
isen@astier_g_client ~ $./alumni-reunion.sh list-student.csv

* Create environement /data/admin/result/2022-09-28 : OK
KADE Anthony is present ? (y/n) : y
LILIAN Giles is present ? (y/n) : y
[...]
ASIA Petty is present ? (y/n) : n

FILE | present | absent

student-list_2013-M2 | 0 | 1
student-list_2018-M2 | 1 | 0
student-list_2020-M2 | 1 | 0

TOTAL | 2 | 1

Output (restart)
isen@astier_g_client ~ $./alumni-reunion.sh /data/admin/list/student-list
/data/admin/result/2022-09-28 exist \
do you want to continue (delete all data) (y/n) : y
* Clean environement : OK
KADE Anthony is present ? (y/n) : y
LILIAN Giles is present ? (y/n) : y
[...]
ASIA Petty is present ? (y/n) : n

FILE | present | absent

student-list_2013-M2 | 0 | 1
student-list_2018-M2 | 1 | 0
student-list_2020-M2 | 1 | 0

TOTAL | 2 | 1

Function

REMINDER : ALL function have to be on the top of the script before the main !!!

Help
The Help function is only here to print information and exit. If something go wrong
you can use this function to exit the script
Print the help and exit
function Help() {

echo "$(basename $0) [absolute or relative path file]"
[[! -z $1]] && [[$(let $1)]] && Exit=$1 || Exit=0
exit ${Exit}

}

Action
The Action function get 2 arguement :

▶ what we need to print

▶ The command to exec (no stdout/stderr)

Action
The Action function get 2 arguement :

▶ what we need to print
▶ The command to exec (no stdout/stderr)

Print info exec and status
function Action () {

Print the first arguement without \n in the end (-n)
echo -ne "\n* $1 : "
Shift to the left
shift
execute all the argument like a classic command but redirect in /dev/

null
$* &> /dev/null
ResultExec=$?
Check the result and print OK/Failed
if [[${ResultExec} -eq 0]]

then
echo OK

else
echo Failed; Help ${ResultExec}

fi
}

Check
You can used Check or Action but Check is used differently.
function Check() {

HaveToExit=$2
[[${HaveToExit} -eq 1]] && $Help ${ResultExec}
if [[$1 -eq 0]]

then
echo OK

else
echo Failed
Help $1

fi
}
Exemple :
echo -n 'Is it OK ? : '
true
Check $? 0

ArgCheck
Check the environement :

▶ is the first arguement is a file

▶ is the output directory exist
▶ is the output directory creation is OK

ArgCheck
Check the environement :

▶ is the first arguement is a file
▶ is the output directory exist

▶ is the output directory creation is OK

ArgCheck
Check the environement :

▶ is the first arguement is a file
▶ is the output directory exist
▶ is the output directory creation is OK

function ArgCheck() {
Check the first arg of the script and directory output data
[[! -f $1]] && echo "$1 is not a file" && Help 1
if [[-d ${DirOutput}]]; then
while [[$Qans != "y"]] && [[$Qans != "n"]]

do
echo -e "\n"
read -p "${DirOutput} exist \

do you want to continue (delete all data) (y/n) : " -n1 Qans
done

Clean environement
[[$Qans == "n"]] && exit || \
Action "Clean environement" "1" rm -rf ${DirOutput}/*
fi

}

NameFileOutput
Create the variable which contain the ouput file for each line of the input file
Create the varname of the output file
function NameFileOutput(){

FileName=student-list_${1}-${2}
echo ${DirOutput}/${FileName}

}

Question
For each line in the input file we need to ask the question present/absent
function Question() {

qName=$1
qSurname=$2
Answer=""
Result=""
Check if the data is y or n
while [[-z ${Result}]]

do
read -p "$Name $Surname is present ? (y/n) : " \

-n1 Answer </dev/tty
[[${Answer} == "y"]] && Result=present
[[${Answer} == "n"]] && Result=absent

done
echo $Result

}

LineToVar
Parse the all files, get data and call other function

Analyse for all line
function LineToVar(){

while read -r Line
do

echo -e "\n"
Gen variable environement for each line
Name=$(echo $Line | cut -d";" -f1)
Surname=$(echo $Line | cut -d";" -f2)
Year=$(echo $Line | cut -d";" -f3)
Level=$(echo $Line | cut -d";" -f4)
Result=$(Question "${Name}" "${Surname}")
OutputFile=$(NameFileOutput "${Year}" "${Level}")
output data in the outputfile

echo "${Name};${Surname};${Year};${Level};${Result}" >> ${OutputFile}

done < $1
}

Resume
Output the resume of all created output files

function Resume() {
echo -e "\n\nFILE\t\t\t|\tpresent\t|\tabsent"
echo "---"
find all output file
for FileOutput in $(find ${DirOutput} -type f \

-name "student-list_*")
do

Gen variable for each file
FileName=$(basename $FileOutput)
Present=$(cat ${FileOutput} | grep present|wc -l)
Absent=$(cat ${FileOutput} | grep absent|wc -l)
TotPresent=$((TotPresent+Present))
TotAbsent=$((TotAbsent+Absent))
echo -e "$FileName\t|\t${Present}\t|\t$Absent"

done
echo "---"
print total
echo -e "TOTAL\t\t\t|\t${TotPresent}\t|\t$TotAbsent"

}

Main
Main call function and create some variable for all the scripts and functions
######## MAIN ########
Date=$(date "+%Y-%m-%d")

DirOutput=/data/admin/result/${Date}

ArgCheck $1

[[! -d ${DirOutput}]] && \
Action "Create environement ${DirOutput}" "1" mkdir -p ${DirOutput}

LineToVar $1

Resume

Main and fucntion file

You can separate the main file and all function with source
#!/bin/bash

source $(realpath $(dirname $0))/fct_classic
source $(realpath $(dirname $0))/fct_specific

ArgCheck $1

[[! -d ${DirOutput}]] && \
Action "Create environement ${DirOutput}" "1" mkdir -p ${DirOutput}

LineToVar $1

Resume

