
Labs - Practice Course

Astier Guillaume, Lefebvre Loic, Morit Luca

24/10/2025

Calculate disk usage

Role-playing dice

Sticks Game

Sticks Game

The Cash Register

Calculate disk usage

Introduction
Write a script calcul_disk_usage.sh which calculates the disk space occupied by a
group of files of a certain type :

▶ The target folder (first argument).

▶ The type of the searched files, with a specific extension (second argument).
▶ The maximum depth of research (third argument).

These three parameters are passed as arguments to your script in the specified order.

If the shell script calcul_disk_usage.sh is not called with the right number of
arguments or false arguments (ex: non-numeric value for the depth), the corresponding
error is displayed and a help message for using the command is shown. You can also
control :

▶ If the target folder exist and is a directory.
▶ If the result of your search contain at least a file.
▶ That the specified extension is in a valid list that you defined.

Introduction
Write a script calcul_disk_usage.sh which calculates the disk space occupied by a
group of files of a certain type :

▶ The target folder (first argument).
▶ The type of the searched files, with a specific extension (second argument).

▶ The maximum depth of research (third argument).

These three parameters are passed as arguments to your script in the specified order.

If the shell script calcul_disk_usage.sh is not called with the right number of
arguments or false arguments (ex: non-numeric value for the depth), the corresponding
error is displayed and a help message for using the command is shown. You can also
control :

▶ If the target folder exist and is a directory.
▶ If the result of your search contain at least a file.
▶ That the specified extension is in a valid list that you defined.

Introduction
Write a script calcul_disk_usage.sh which calculates the disk space occupied by a
group of files of a certain type :

▶ The target folder (first argument).
▶ The type of the searched files, with a specific extension (second argument).
▶ The maximum depth of research (third argument).

These three parameters are passed as arguments to your script in the specified order.

If the shell script calcul_disk_usage.sh is not called with the right number of
arguments or false arguments (ex: non-numeric value for the depth), the corresponding
error is displayed and a help message for using the command is shown. You can also
control :

▶ If the target folder exist and is a directory.
▶ If the result of your search contain at least a file.
▶ That the specified extension is in a valid list that you defined.

Introduction
Write a script calcul_disk_usage.sh which calculates the disk space occupied by a
group of files of a certain type :

▶ The target folder (first argument).
▶ The type of the searched files, with a specific extension (second argument).
▶ The maximum depth of research (third argument).

These three parameters are passed as arguments to your script in the specified order.

If the shell script calcul_disk_usage.sh is not called with the right number of
arguments or false arguments (ex: non-numeric value for the depth), the corresponding
error is displayed and a help message for using the command is shown. You can also
control :

▶ If the target folder exist and is a directory.

▶ If the result of your search contain at least a file.
▶ That the specified extension is in a valid list that you defined.

Introduction
Write a script calcul_disk_usage.sh which calculates the disk space occupied by a
group of files of a certain type :

▶ The target folder (first argument).
▶ The type of the searched files, with a specific extension (second argument).
▶ The maximum depth of research (third argument).

These three parameters are passed as arguments to your script in the specified order.

If the shell script calcul_disk_usage.sh is not called with the right number of
arguments or false arguments (ex: non-numeric value for the depth), the corresponding
error is displayed and a help message for using the command is shown. You can also
control :

▶ If the target folder exist and is a directory.
▶ If the result of your search contain at least a file.

▶ That the specified extension is in a valid list that you defined.

Introduction
Write a script calcul_disk_usage.sh which calculates the disk space occupied by a
group of files of a certain type :

▶ The target folder (first argument).
▶ The type of the searched files, with a specific extension (second argument).
▶ The maximum depth of research (third argument).

These three parameters are passed as arguments to your script in the specified order.

If the shell script calcul_disk_usage.sh is not called with the right number of
arguments or false arguments (ex: non-numeric value for the depth), the corresponding
error is displayed and a help message for using the command is shown. You can also
control :

▶ If the target folder exist and is a directory.
▶ If the result of your search contain at least a file.
▶ That the specified extension is in a valid list that you defined.

Tips

▶ Make a first version without any argument, with a null depth of research or a full
depth, and a specific extension with a start of research from your current folder.
(ex : All files with txt extension from the current folder in any child folder)

▶ A second script version with the target folder argument
▶ A third script version with the extension of the searched file
▶ A fourth script argument with the depth of your research

Tips

▶ Make a first version without any argument, with a null depth of research or a full
depth, and a specific extension with a start of research from your current folder.
(ex : All files with txt extension from the current folder in any child folder)

▶ A second script version with the target folder argument

▶ A third script version with the extension of the searched file
▶ A fourth script argument with the depth of your research

Tips

▶ Make a first version without any argument, with a null depth of research or a full
depth, and a specific extension with a start of research from your current folder.
(ex : All files with txt extension from the current folder in any child folder)

▶ A second script version with the target folder argument
▶ A third script version with the extension of the searched file

▶ A fourth script argument with the depth of your research

Tips

▶ Make a first version without any argument, with a null depth of research or a full
depth, and a specific extension with a start of research from your current folder.
(ex : All files with txt extension from the current folder in any child folder)

▶ A second script version with the target folder argument
▶ A third script version with the extension of the searched file
▶ A fourth script argument with the depth of your research

Help

The following concepts will be used to make the script :

▶ The bash command du (for Disk Usage) which return the occupied disk space for
a file.

▶ The bash command find to search and print a list of files according to their
extension (one filter from many possible). For this command, beware of file’s
name with spaces (IFS=$'\n')

▶ And of course, the math expressions to calculate the total amount of disk space
with an addition.

Help

The following concepts will be used to make the script :

▶ The bash command du (for Disk Usage) which return the occupied disk space for
a file.

▶ The bash command find to search and print a list of files according to their
extension (one filter from many possible). For this command, beware of file’s
name with spaces (IFS=$'\n')

▶ And of course, the math expressions to calculate the total amount of disk space
with an addition.

Help

The following concepts will be used to make the script :

▶ The bash command du (for Disk Usage) which return the occupied disk space for
a file.

▶ The bash command find to search and print a list of files according to their
extension (one filter from many possible). For this command, beware of file’s
name with spaces (IFS=$'\n')

▶ And of course, the math expressions to calculate the total amount of disk space
with an addition.

Example of execution
The display must necessarily look like this example:
username@hostname:$./calcul_disk_usage.sh $HOME txt 2
/home/catanese/phpmyadmin.txt size = 4
/home/catanese/.minetest/debug.txt size = 456
/home/catanese/Vidéos/torrent.txt size = 4
/home/catanese/prive/ssh_one_and_one.txt size = 4
/home/catanese/install/torrent.txt size = 4
/home/catanese/bin/README_yGenerate_QCM.txt size = 4
/home/catanese/bin/monfichier.txt size = 4
Number of files found 7, size : 480 octets

username@hostname:$./calcul_disk_usage.sh $HOME txt invalid
Search depth must be an integer
Command syntax ./calcul_disk_usage.sh TARGET_DIRECTORY EXTENSION DEPTH

username@hostname:$./calcul_disk_usage.sh invalid txt 2
The name of the directory entered does not exist
Command syntax ./calcul_disk_usage.sh TARGET_DIRECTORY EXTENSION DEPTH

username@hostname:$./calcul_disk_usage.sh $HOME invalid 2
Extension name is not in the list
Command syntax ./calcul_disk_usage.sh TARGET_DIRECTORY EXTENSION DEPTH

username@hostname:$./calcul_disk_usage.sh $HOME/workspace java 2
Number of files found 0, size : 0 octets

username@hostname:$./calcul_disk_usage.sh $HOME/workspace java 4
/home/catanese/workspace/VISUEL/src/geodesie/CRepereMadone.java size = 4
/home/catanese/workspace/VISUEL/src/geodesie/CPoint3D.java size = 20
/home/catanese/workspace/VISUEL/src/enregistrement/CEnregistrementVG0XThread.java

size = 4
/home/catanese/workspace/VISUEL/src/enregistrement/CEnregistrementKPCEThread.java

size = 4…

/home/catanese/workspace/VISUEL/src/ihm/FenRejeu.java size = 20
/home/catanese/workspace/VISUEL/src/ihm/FenPrepa.java size = 16
/home/catanese/workspace/VISUEL/src/ihm/FenObj.java size = 116
/home/catanese/workspace/VISUEL/src/ihm/FullScreenToggleAction.java size = 4
/home/catanese/workspace/Test_Auto_IHM_Java/src/simple_ihm/Main_IHM.java size = 8
Number of files found 58, size : 1336 octets

Role-playing dice

Introduction

The goal of this exercise is to create a script that will display X dice with a random
number between 1 and 6 in the terminal.

Display

The dice have to be like that :
.-------.

/ * /|
/_______/ |
| |*|
| * | /
| |/
'-------'

The display must necessarily look like this example :
isen@isen $./my-dice
how many dice : 3

.-------.
/ 1 /|

/_______/ |
| |1|
| 1 | /
| |/
'-------'

.-------.
/ 6 /|

/_______/ |
| |6|
| 6 | /
| |/
'-------'

.-------.
/ 4 /|

/_______/ |
| |4|
| 4 | /
| |/
'-------'

Requirement

▶ The sample of the ASCII art of the dice is present on your docker instance :
/opt/dice.ascii

▶ The script must have contextual help with the ‘-h’ option.
▶ The management of the random must be done with the command shuf (man

shuf).
▶ The script name is : my-dice and upload on Moodle.
▶ The script can be executed without option with user interaction (like the example

of “Display”).
▶ The script can be executed with the option ‘-n’ followed by a number (ex:

./my-dice -n 3).
▶ The minimum number of dice must be 1 and the maximum must be 6. You need

to check it and return the contextual help if it’s not good.

Requirement

▶ The sample of the ASCII art of the dice is present on your docker instance :
/opt/dice.ascii

▶ The script must have contextual help with the ‘-h’ option.

▶ The management of the random must be done with the command shuf (man
shuf).

▶ The script name is : my-dice and upload on Moodle.
▶ The script can be executed without option with user interaction (like the example

of “Display”).
▶ The script can be executed with the option ‘-n’ followed by a number (ex:

./my-dice -n 3).
▶ The minimum number of dice must be 1 and the maximum must be 6. You need

to check it and return the contextual help if it’s not good.

Requirement

▶ The sample of the ASCII art of the dice is present on your docker instance :
/opt/dice.ascii

▶ The script must have contextual help with the ‘-h’ option.
▶ The management of the random must be done with the command shuf (man

shuf).

▶ The script name is : my-dice and upload on Moodle.
▶ The script can be executed without option with user interaction (like the example

of “Display”).
▶ The script can be executed with the option ‘-n’ followed by a number (ex:

./my-dice -n 3).
▶ The minimum number of dice must be 1 and the maximum must be 6. You need

to check it and return the contextual help if it’s not good.

Requirement

▶ The sample of the ASCII art of the dice is present on your docker instance :
/opt/dice.ascii

▶ The script must have contextual help with the ‘-h’ option.
▶ The management of the random must be done with the command shuf (man

shuf).
▶ The script name is : my-dice and upload on Moodle.

▶ The script can be executed without option with user interaction (like the example
of “Display”).

▶ The script can be executed with the option ‘-n’ followed by a number (ex:
./my-dice -n 3).

▶ The minimum number of dice must be 1 and the maximum must be 6. You need
to check it and return the contextual help if it’s not good.

Requirement

▶ The sample of the ASCII art of the dice is present on your docker instance :
/opt/dice.ascii

▶ The script must have contextual help with the ‘-h’ option.
▶ The management of the random must be done with the command shuf (man

shuf).
▶ The script name is : my-dice and upload on Moodle.
▶ The script can be executed without option with user interaction (like the example

of “Display”).

▶ The script can be executed with the option ‘-n’ followed by a number (ex:
./my-dice -n 3).

▶ The minimum number of dice must be 1 and the maximum must be 6. You need
to check it and return the contextual help if it’s not good.

Requirement

▶ The sample of the ASCII art of the dice is present on your docker instance :
/opt/dice.ascii

▶ The script must have contextual help with the ‘-h’ option.
▶ The management of the random must be done with the command shuf (man

shuf).
▶ The script name is : my-dice and upload on Moodle.
▶ The script can be executed without option with user interaction (like the example

of “Display”).
▶ The script can be executed with the option ‘-n’ followed by a number (ex:

./my-dice -n 3).

▶ The minimum number of dice must be 1 and the maximum must be 6. You need
to check it and return the contextual help if it’s not good.

Requirement

▶ The sample of the ASCII art of the dice is present on your docker instance :
/opt/dice.ascii

▶ The script must have contextual help with the ‘-h’ option.
▶ The management of the random must be done with the command shuf (man

shuf).
▶ The script name is : my-dice and upload on Moodle.
▶ The script can be executed without option with user interaction (like the example

of “Display”).
▶ The script can be executed with the option ‘-n’ followed by a number (ex:

./my-dice -n 3).
▶ The minimum number of dice must be 1 and the maximum must be 6. You need

to check it and return the contextual help if it’s not good.

Advise

▶ You can use sed to replace something in the dice.

▶ You can create a variable which will sotck the return of the shuf command for
each die.

▶ Pay attention to the spaces of the ascii art in relation to the variable.

Advise

▶ You can use sed to replace something in the dice.
▶ You can create a variable which will sotck the return of the shuf command for

each die.

▶ Pay attention to the spaces of the ascii art in relation to the variable.

Advise

▶ You can use sed to replace something in the dice.
▶ You can create a variable which will sotck the return of the shuf command for

each die.
▶ Pay attention to the spaces of the ascii art in relation to the variable.

Sticks Game

Introduction

The goal of this exerice is to create the Sticks Game.
This game is a duel between computer and human player.
There are N sticks. Each gamer has to take 1, 2 or 3 sticks. If the gamer take the last
sitck, he loses.

Requirements

▶ The numbers of sticks is given in argument.

▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.
▶ The random number must be between 1 and 3. The modulo can take the value of

0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.

▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.
▶ The random number must be between 1 and 3. The modulo can take the value of

0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.

▶ When the computer play, it take randomly sitcks, but it wants to win. So if there
are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.

▶ The random number must be between 1 and 3. The modulo can take the value of
0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.

▶ The random number must be between 1 and 3. The modulo can take the value of
0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.
▶ The random number must be between 1 and 3. The modulo can take the value of

0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.
▶ The random number must be between 1 and 3. The modulo can take the value of

0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.
▶ The random number must be between 1 and 3. The modulo can take the value of

0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.

▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.
▶ The random number must be between 1 and 3. The modulo can take the value of

0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .

▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.
▶ The random number must be between 1 and 3. The modulo can take the value of

0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Sample with human player is winner
isen@isen $./sticks_game.sh 10
Start Sticks Game with 10 sticks
| | | | | | | | | |
| | | | | | | | | |
How many sticks do you take ? 3
| | | | | | |
| | | | | | |
Computer takes 2
| | | | |
| | | | |
How many sticks do you take ? 1
| | | |
| | | |
Computer takes 2
| |
| |
How many sticks do you take ? 1
|
|
You win

Sample with computer is winner

isen@isen $./sticks_game.sh 10
Start Sticks Game with 10 sticks
| | | | | | | | | |
| | | | | | | | | |
How many sticks do you take ? 3
| | | | | | |
| | | | | | |
Computer takes 1
| | | | | |
| | | | | |
How many sticks do you take ? 3
| | |
| | |
Computer takes 2
|
|
How many sticks do you take ? 1
You lose

Sample with checks
isen@isen $./sticks_game.sh notNumber
The sitck number is not a number
isen@isen $ echo $?
1
isen@isen $./sticks_game.sh 9
The sitck number is not between 20 and 30
isen@isen $ echo $?
2
isen@isen $./sticks_game.sh 31
The sitck number is not between 20 and 30
isen@isen $./sticks_game.sh 10
Start Sticks Game with 10 sticks
| | | | | | | | | |
| | | | | | | | | |
How many sticks do you take ? notNumber
It is not a number
How many sticks do you take ? 5
You have take sitck between 1 and 3
How many sticks do you take ?

Sticks Game

Introduction

The goal of this exerice is to create the Sticks Game.
This game is a duel between computer and human player.
There are N sticks. Each gamer has to take 1, 2 or 3 sticks. If the gamer take the last
sitck, he loses.

Requirements

▶ The numbers of sticks is given in argument.

▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.
▶ The random number must be between 1 and 3. The modulo can take the value of

0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.

▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.
▶ The random number must be between 1 and 3. The modulo can take the value of

0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.

▶ When the computer play, it take randomly sitcks, but it wants to win. So if there
are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.

▶ The random number must be between 1 and 3. The modulo can take the value of
0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.

▶ The random number must be between 1 and 3. The modulo can take the value of
0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.
▶ The random number must be between 1 and 3. The modulo can take the value of

0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.
▶ The random number must be between 1 and 3. The modulo can take the value of

0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.
▶ The random number must be between 1 and 3. The modulo can take the value of

0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.

▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.
▶ The random number must be between 1 and 3. The modulo can take the value of

0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .

▶ The name of script must be : sticks_game.sh

Requirements

▶ The numbers of sticks is given in argument.
▶ The numbers of sticks have to be a number between 10 and 30.
▶ The humain player is the first gamer.
▶ When the computer play, it take randomly sitcks, but it wants to win. So if there

are 3 sitcks, it take 2. If there are 2 sticks, it takes 1.
▶ The random number must be between 1 and 3. The modulo can take the value of

0. In this case, a new random number must be recalculated until it has a value
between 1 and 3.

▶ All parameters must be tested. (if the script asks a number, so the script must
check if the gamer typed a valid number).

▶ The display must follow the example.
▶ There must be a function to display the number remaining sticks .
▶ The name of script must be : sticks_game.sh

Sample with human player is winner
isen@isen $./sticks_game.sh 10
Start Sticks Game with 10 sticks
| | | | | | | | | |
| | | | | | | | | |
How many sticks do you take ? 3
| | | | | | |
| | | | | | |
Computer takes 2
| | | | |
| | | | |
How many sticks do you take ? 1
| | | |
| | | |
Computer takes 2
| |
| |
How many sticks do you take ? 1
|
|
You win

Sample with computer is winner

isen@isen $./sticks_game.sh 10
Start Sticks Game with 10 sticks
| | | | | | | | | |
| | | | | | | | | |
How many sticks do you take ? 3
| | | | | | |
| | | | | | |
Computer takes 1
| | | | | |
| | | | | |
How many sticks do you take ? 3
| | |
| | |
Computer takes 2
|
|
How many sticks do you take ? 1
You lose

Sample with checks
isen@isen $./sticks_game.sh notNumber
The sitck number is not a number
isen@isen $ echo $?
1
isen@isen $./sticks_game.sh 9
The sitck number is not between 20 and 30
isen@isen $ echo $?
2
isen@isen $./sticks_game.sh 31
The sitck number is not between 20 and 30
isen@isen $./sticks_game.sh 10
Start Sticks Game with 10 sticks
| | | | | | | | | |
| | | | | | | | | |
How many sticks do you take ? notNumber
It is not a number
How many sticks do you take ? 5
You have take sitck between 1 and 3
How many sticks do you take ?

The Cash Register

The Cash Register

The purpose of the exercise is to create a cash register for a store.

Main requirements

▶ The tree must be:

▶ /home/isen/EXAM/CashRegister/CashRegister.sh : your script
▶ /home/isen/EXAM/CashRegister/CashRegister.d : your folder where all sales will be

stored.
▶ /home/isen/EXAM/CashRegister/CashRegister.d/YYYYMMDD.csv : One day sales (example :

20221013.csv)
▶ One day sales are stored in CSV format like this:

HH-MM;customer name;amount;payment method (example : 13-28;LEFEBVRE;28;CARD)
▶ Amounts are always whole numbers (integer)
▶ The means of payment are only: CASH, CARD or BANK_CHECK

Main requirements

▶ The tree must be:
▶ /home/isen/EXAM/CashRegister/CashRegister.sh : your script

▶ /home/isen/EXAM/CashRegister/CashRegister.d : your folder where all sales will be
stored.

▶ /home/isen/EXAM/CashRegister/CashRegister.d/YYYYMMDD.csv : One day sales (example :
20221013.csv)

▶ One day sales are stored in CSV format like this:
HH-MM;customer name;amount;payment method (example : 13-28;LEFEBVRE;28;CARD)

▶ Amounts are always whole numbers (integer)
▶ The means of payment are only: CASH, CARD or BANK_CHECK

Main requirements

▶ The tree must be:
▶ /home/isen/EXAM/CashRegister/CashRegister.sh : your script
▶ /home/isen/EXAM/CashRegister/CashRegister.d : your folder where all sales will be

stored.

▶ /home/isen/EXAM/CashRegister/CashRegister.d/YYYYMMDD.csv : One day sales (example :
20221013.csv)

▶ One day sales are stored in CSV format like this:
HH-MM;customer name;amount;payment method (example : 13-28;LEFEBVRE;28;CARD)

▶ Amounts are always whole numbers (integer)
▶ The means of payment are only: CASH, CARD or BANK_CHECK

Main requirements

▶ The tree must be:
▶ /home/isen/EXAM/CashRegister/CashRegister.sh : your script
▶ /home/isen/EXAM/CashRegister/CashRegister.d : your folder where all sales will be

stored.
▶ /home/isen/EXAM/CashRegister/CashRegister.d/YYYYMMDD.csv : One day sales (example :

20221013.csv)

▶ One day sales are stored in CSV format like this:
HH-MM;customer name;amount;payment method (example : 13-28;LEFEBVRE;28;CARD)

▶ Amounts are always whole numbers (integer)
▶ The means of payment are only: CASH, CARD or BANK_CHECK

Main requirements

▶ The tree must be:
▶ /home/isen/EXAM/CashRegister/CashRegister.sh : your script
▶ /home/isen/EXAM/CashRegister/CashRegister.d : your folder where all sales will be

stored.
▶ /home/isen/EXAM/CashRegister/CashRegister.d/YYYYMMDD.csv : One day sales (example :

20221013.csv)
▶ One day sales are stored in CSV format like this:

HH-MM;customer name;amount;payment method (example : 13-28;LEFEBVRE;28;CARD)

▶ Amounts are always whole numbers (integer)
▶ The means of payment are only: CASH, CARD or BANK_CHECK

Main requirements

▶ The tree must be:
▶ /home/isen/EXAM/CashRegister/CashRegister.sh : your script
▶ /home/isen/EXAM/CashRegister/CashRegister.d : your folder where all sales will be

stored.
▶ /home/isen/EXAM/CashRegister/CashRegister.d/YYYYMMDD.csv : One day sales (example :

20221013.csv)
▶ One day sales are stored in CSV format like this:

HH-MM;customer name;amount;payment method (example : 13-28;LEFEBVRE;28;CARD)
▶ Amounts are always whole numbers (integer)

▶ The means of payment are only: CASH, CARD or BANK_CHECK

Main requirements

▶ The tree must be:
▶ /home/isen/EXAM/CashRegister/CashRegister.sh : your script
▶ /home/isen/EXAM/CashRegister/CashRegister.d : your folder where all sales will be

stored.
▶ /home/isen/EXAM/CashRegister/CashRegister.d/YYYYMMDD.csv : One day sales (example :

20221013.csv)
▶ One day sales are stored in CSV format like this:

HH-MM;customer name;amount;payment method (example : 13-28;LEFEBVRE;28;CARD)
▶ Amounts are always whole numbers (integer)
▶ The means of payment are only: CASH, CARD or BANK_CHECK

Step 1 : the launch menu

When you run your script, it should display the following menu:

isen@lefebvre_l_client ~/EXAM/CashRegister $./CashRegister.sh
Select your action

add a sale: ADD
close day: CLOSE
quit: QUIT

nokeywork
Please select ADD|CLOSE|QUIT

Select your action
add a sale: ADD
close day: CLOSE
quit: QUIT

ADD
add sale

Select your action
add a sale: ADD
close day: CLOSE
quit: QUIT

CLOSE
close

Select your action
add a sale: ADD
close day: CLOSE
quit: QUIT

QUIT
Good Bye

You must use : - a case/esac - a loop: while - the read command - 1 function per
keyword, i.e. 4 functions - 1 function to display the menu

Step 2 : add a sale

You must complete your ADD function to save a sale in the file (be careful at the very
first execution, it may be necessary to create some folders, file).

If ever the file of the day exists, it must be completed.

You must check when entering whether: - customer name is not empty - the amount is
indeed an int - the payment method is correct

You must of course respect the example below

isen@lefebvre_l_client ~/EXAM/CashRegister $./CashRegister.sh
Select your action

add a sale: ADD
close day: CLOSE
quit: QUIT

ADD
Customer:
Customer: Loic
Amount: pas un chiffre
Amount: 12
Means of payment (CARD|CASH|BANK_CHECK): ERROR
Means of payment (CARD|CASH|BANK_CHECK): CARD
Select your action

add a sale: ADD
close day: CLOSE
quit: QUIT

ADD
Customer: Guillaume
Amount: 12
Means of payment (CARD|CASH|BANK_CHECK): CASH
Select your action

add a sale: ADD
close day: CLOSE
quit: QUIT

QUIT
Good Bye

isen@lefebvre_l_client ~/EXAM/CashRegister $ cat CashRegister.d/20221013.csv
20-16;Loic;12;CARD
20-16;Guillaume;12;CASH

Step 3 : the closing of the day

You must complete your CLOSE function to display : - show total by payment method
- display the total of the day

isen@lefebvre_l_client ~/EXAM/CashRegister $ cat CashRegister.d/20221013.csv
20-16;Loic;12;CARD
20-16;Loic;12;CARD
20-16;Loic;12;CARD
20-16;Loic;12;CARD
20-16;Loic;12;CARD
20-16;Loic;12;CARD
20-16;Guillaume;12;CASH
20-16;Guillaume;12;CASH
20-16;Guillaume;12;CASH
20-16;Guillaume;12;CASH
20-16;Guillaume;12;CASH
isen@lefebvre_l_client ~/EXAM/CashRegister $./CashRegister.sh
Select your action

add a sale: ADD
close day: CLOSE
quit: QUIT

CLOSE
TOTAL CASH : 60
TOTAL CARD : 72
TOTAL BANK_CHECK : 0
TOTAL : 132
Select your action

add a sale: ADD
close day: CLOSE
quit: QUIT

QUIT
Good Bye

